[Ahbara A., Bahbahani H., Almathen F., Al Abri M., Agoub M.O., Abeba A., Kebede A., Musa H.H., Mastrangelo S., Pilla F., Ciani E., Hanotte O., Mwacharo J.M. (2019). Genome-wide variation, candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Front. Genet., 9: 699.]Search in Google Scholar
[Almeida O.A.C., Moreira G.C.M., Rezende F.M., Boschiero C., De Oliveira Peixoto J., Ibelli A.M.G., Ledur M.C., de Novais F.J., Coutinho L.L. (2019). Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics, 20: 449.]Search in Google Scholar
[Anand-Srivastava M.B. (2005). Natriuretic peptide receptor-C signaling and regulation. Peptides, 26: 1044–1059.]Search in Google Scholar
[Andersson L. (2012). How selective sweeps in domestic animals provide new insight into biological mechanisms. J. Intern. Med., 271: 1–14.]Search in Google Scholar
[Bartels C.F., Bükülmez H., Padayatti P., Rhee D.K., van Ravenswaaij-Arts C., Pauli R.M., Mundlos S., Chitayat D., Shih L.Y., Al-Gazali L.I., Kant S., Cole T., Morton J., Cormier-Daire V., Faivre L., Lees M., Kirk J., Mortier G.R., Leroy J., Zabel B., Kim C.A., Crow Y., Braverman N.E., vanden Akker F., Warman M.L. (2004). Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am. J. Hum. Genet., 75: 27–34.]Search in Google Scholar
[Blaha M., Nemcova L., Prochazka R. (2015). Cyclic guanosine monophosphate does not inhibit gonadotropin-induced activation of mitogen-activated protein kinase 3/1 in pig cumulusoocyte complexes. Reprod. Biol. Endocrinol., 13: 1.]Search in Google Scholar
[Bouwman A.C., Daetwyler H.D., Chamberlain A.J., Ponce C.H., Sargolzaei M., Schenkel F.S., Sahana G., Govignon-Gion A., Boitard S., Dolezal M., Pausch H., Brøndum R.F., Bowman P.J., Thomsen B., Guldbrandtsen B., Lund M.S., Servin B., Garrick D.J., Reecy J., Vilkki J., Bagnato A., Wang M., Hoff J.L., Schnabel R.D., Taylor J.F., Vinkhuyzen A.A.E., Panitz F., Bendixen C., Holm L.E., Gredler B., Hozé C., Boussaha M., Sanchez M.P., Rocha D., Capitan A., Tribout T., Barbat A., Croiseau P., Drögemüller C., Jagannathan V., Vander Jagt C., Crowley J.J., Bieber A., Purfield D.C., Berry D.P., Emmerling R., Götz K.U., Frischknecht M., Russ I., Sölkner J., Van Tassell C.P., Fries R., Stothard P., Veerkamp R.F., Boichard D., Goddard M.E., Hayes B.J. (2018). Metaanalysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet., 50: 362–367.]Search in Google Scholar
[Crispim A.C., Kelly M.J., Guimarães S.E.F., ESilva F.F., Fortes M.R.S., Wenceslau R.R., Moore S. (2015). Multi-trait GWAS and new candidate genes annotation for growth curve parameters in Brahman cattle. PloS ONE, 10: e0139906.]Search in Google Scholar
[de Simoni Gouveia J.J., da Silva M.V.G.B., Paiva S.R., de Oliveira S.M.P. (2014). Identification of selection signatures in livestock species. Genet. Mol. Biol., 37: 330–42.]Search in Google Scholar
[FAO (2019). World Food and Agriculture – Statistical pocketbook. Rome.]Search in Google Scholar
[Keller S.R., Taylor D.R. (2008). History, chance and adaptation during biological invasion: Separating stochastic phenotypic evolution from response to selection. Ecol. Lett., 11: 852–866.]Search in Google Scholar
[Khan R., Raza S.H.A., Guo H., Xiaoyu W., Sen W., Suhail S.M., Rahman A., Ullah I., Abd El-Aziz A.H., Manzari Z., Alshawi A. (2020). Genetic variants in the TORC2 gene promoter and their association with body measurement and carcass quality traits in Qinchuan cattle. PloS ONE, 15: e0227254.]Search in Google Scholar
[Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., Mc Culloch R., Whan V., Gietzen K., Paiva S., Barendse W., Cia-ni E., Raadsma H., Mc Ewan J., Dalrymple B., International Sheep Genomics Consortium Members (2012). Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PloS Biol., 10: e1001258.]Search in Google Scholar
[Liu G.Y., Raza S.H.A., Zhou L., Abd El-Aziz A.H., Sabek A., Shoorei H., Amjadi M., Gui L.S. (2020). The genetic polymorphisms of melanocortin-4 receptor gene are associated with carcass quality traits in a Chinese indigenous beef cattle breed. Res. Vet. Sci., 132: 202–206.]Search in Google Scholar
[Michenet A., Barbat M., Saintilan R., Venot E., Phocas F. (2016). Detection of quantitative trait loci for maternal traits using high-density genotypes of Blonde d’Aquitaine beef cattle. BMC Genet., 17: 88.]Search in Google Scholar
[Moradi M.H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K.G., Mc Ewan J.C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet., 13: 10.]Search in Google Scholar
[Nei M., Roychoudhury A.K. (1974). Sampling variances of heterozygosity and genetic distance. Genetics, 76: 379–390.]Search in Google Scholar
[Ng P.C., Henikoff S. (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res., 31: 3812–3814.]Search in Google Scholar
[Olney R.C. (2006). C-type natriuretic peptide in growth: A new paradigm. Growth Horm. IGF Res., 16: S6–14.]Search in Google Scholar
[Pitt D., Sevane N., Nicolazzi E.L., Mac Hugh D.E., Park S.D.E., Colli L., Martinez R., Bruford M.W., Orozco-ter Wengel P. (2019). Domestication of cattle: Two or three events? Evol. Appl., 12: 123–136.]Search in Google Scholar
[Potter L.R., Abbey-Hosch S., Dickey D.M. (2006). Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrin. Rev., 27: 47–72.]Search in Google Scholar
[Randhawa I.A.S., Khatkar M.S., Thomson P.C., Raadsma H.W. (2016). A meta-assembly of selection signatures in cattle. PLoS ONE, 11: e0153013.]Search in Google Scholar
[Raza S.H.A., Khan R., Abdelnour S.A., El-Hack A., Mohamed E., Khafaga A.F., Taha A., Ohran H., Mei C., Schreurs N.M., Zan L. (2019). Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Genes, 10: 717.]Search in Google Scholar
[Raza S.H.A., Liu G.Y., Zhou L., Gui L.S., Khan R., Jinmeng Y., Chugang M., Schreurs N.M., Ji R., Zan L. (2020 a). Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene, 758: 144957.10.1016/j.gene.2020.14495732683081]Search in Google Scholar
[Raza S.H.A., Khan S., Amjadi M., Abdelnour S.A., Ohran H., Alanazi K.M., Abd El-Hack M.E., Taha A.E., Khan R., Gong C., Schreurs N.M. (2020 b). Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch. Biochem. Biophys., 694: 108543.10.1016/j.abb.2020.10854332798459]Search in Google Scholar
[Raza S.H.A., Khan R., Gui L., Schreurs N.M., Wang X., Mei C., Yang X., Gong C., Zan L. (2020 c). Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in Qinchuan beef cattle. Biosci. Rep., 40: BSR20192113.10.1042/BSR20192113706989532110807]Search in Google Scholar
[Raza S.H.A., Shijun L., Khan R., Schreurs N.M., Manzari Z., Abd El-Aziz A.H., Ullah I., Kaster N., Shah M.A., Zan L. (2020 d). Polymorphism of the PLIN1 gene and its association with body measures and ultrasound carcass traits in Qinchuan beef cattle. Genome, 63: 483–492.10.1139/gen-2019-018432615043]Search in Google Scholar
[Snelling W.M., Allan M.F., Keele J.W., Kuehn L.A., Mc Daneld T., Smith T.P.L., Sonstegard T.S., Thallman R.M., Bennett G.L. (2010). Genome-wide association study of growth in crossbred beef cattle. J. Anim. Sci., 88: 837–848.]Search in Google Scholar
[Sun W., Liu C., Feng Y., Zhuo G., Zhou W., Fei X., Zhang Z. (2017). Macrophage colonystimulating factor (M-CSF) is an intermediate in the process of luteinizing hormone-induced decrease in natriuretic peptide receptor 2 (NPR2) and resumption of oocyte meiosis. J. Ovarian Res., 10: 68.]Search in Google Scholar
[Tamura N., Garbers D.L. (2003). Regulation of the guanylyl cyclase-B receptor by alternative splicing. J. Biol. Chem., 278: 48880–48889.]Search in Google Scholar
[Tamura N., Doolittle L.K., Hammer R.E., Shelton J.M., Richardson J.A., Garbers D.L. (2004). Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc. Natl. Acad. Sci., 101: 17300–17305.]Search in Google Scholar
[Tsuji T., Kunieda T. (2005). A loss-of-function mutation in natriuretic peptide receptor 2 (NPR2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J. Biol. Chem., 280: 14288–14292.]Search in Google Scholar
[Vasques G.A., Arnhold I.J.P., Jorge A.A.L. (2014). Role of the natriuretic peptide system in normal growth and growth disorders. Horm. Res. Paediatr., 82: 222–229.]Search in Google Scholar
[Wang L., Raza S.H.A., Gui L., Li S., Liu X., Yang X., Wang S., Zan L., Zhao C. (2020). Associations between UASMS2 polymorphism in leptin gene and growth, carcass and meat quality traits of cattle: a meta-analysis. Anim. Biotech., doi: 10.1080/10495398.2020.1805327.10.1080/10495398.2020.180532732804584]Search in Google Scholar
[Wang S.R., Jacobsen C.M., Carmichael H., Edmund A.B., Robinson J.W., Olney R.C., Miller T.C., Moon J.E., Mericq V., Potter L.R., Warman M.L., Hirschhorn J.N., Dauber A. (2015). Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature. Hum. Mutat., 36: 474–481.]Search in Google Scholar
[Wei C., Wang H., Liu G., Wu M., Cao J., Liu Z., Liu R., Zhao F., Zhang L., Lu J., Du L. (2015). Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics, 16: 194.]Search in Google Scholar
[Xu L., Bickhart D.M., Cole J.B., Schroeder S.G., Song J., Van Tassell C.P., Sonstegard T.S., Liu G.E. (2015). Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol. Biol. Evol., 32: 711–725.]Search in Google Scholar