Zacytuj

Abdelqader A., Al-Fataftah A. (2016). Effect of dietary butyric acid on performance, intestinal morphology, microflora composition and intestinal recovery of heat-stressed broilers. Livest. Sci., 183: 78–83.Search in Google Scholar

Ahmed S. T., Hwang J. A., Hoon J., Mun H. S., Yang C. J. (2014). Comparison of single and blend acidifiers as alternative to antibiotics on growth performance, fecal microflora, and humoral immunity in weaned piglets. Asian-Australas J. Anim. Sci., 27: 93–100.Search in Google Scholar

Besten G. den, Eunen K. van, Groen A. K., Venema K., Reijnqoud D. J., Bak-ker B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid. Res., 54: 2325–2340.Search in Google Scholar

Boas A. D. C. V., Budiño F. E. L., Neto T., Schmidt A., Dadalt J. C., Monferdini R. P., Sitanaka N. Y., Moraes J. E., Pizzolante C. C. (2016). Organic acids in diets of weaned piglets: performance, digestibility and economical viability. Arquivo Brasil. Med. Vet. Zoot., 68: 1015–1022.Search in Google Scholar

Bonos E. (2010). Study on the possibility of the combined use of acidifiers and mannan-oligosaccha-rides in the feed of reared quail. Doctoral Thesis. Aristotle University of Thessaloniki, School of Veterinary Medicine, Thessaloniki, Greece.Search in Google Scholar

Bosi P., Jung H. J., Han In K., Perini S., Cacciavillani J. A., Casini L., Creston D., Gremokolini C., Mattuzzi S. (1999). Effects of dietary buffering characteristic and protected or unprotected acids on piglet growth, digestibility and characteristics of gut content. Asian-Aust. J. Anim. Sci., 12: 1104–1110.Search in Google Scholar

Canfora E. E., Jocken J. W., Blaak E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 11: 577–591.Search in Google Scholar

Casanova-Higes A., Andrés-Barranco S., Mainar-Jaime R. C. (2017). Effect of the addition of protected sodium butyrate to the feed on Salmonella spp. infection dynamics in fattening pigs. Anim. Feed Sci. Tech., 231: 12–18.Search in Google Scholar

Chattopadhyay M. K. (2014). Use of antibiotics as feed additives: a burning question. Front. Microbiol., 5:334: 1–3.Search in Google Scholar

Chwen L. T., Foo H. L., Thanh N. T., Choe D. W. (2013). Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australas. J. Anim. Sci., 26: 700–704.Search in Google Scholar

Devi S. M., Lee K. Y., Kim I. H. (2016). Analysis of the effect of dietary protected organic acid blend on lactating sows and their piglets. R. Bras. Zootec., 45: 85–92.Search in Google Scholar

Diao H., Zheng P., Yu B., He J., Mao X. B., Yu J., Chen D. W. (2014). Effects of dietary supplementation with benzoic acid on intestinal morphological structure and microflora in weaned piglets. Livest. Sci., 167: 249–256.Search in Google Scholar

European Communities (2001). Commission Directive 2001/93/EC of 9 November 2001 amending Directive 91/630/EEC laying down minimum standards for the protection of pigs. Official Journal L316, 01/12/2001. 2001, 0036–0038.Search in Google Scholar

Fang C. L., Sun H., Wu J., Niu H. H., Feng J. (2014). Effects of sodium butyrate on growth performance, hematological and immunological characteristics of weanling piglets. J. Anim. Phys. Nutr. (Berl.), 98: 680–685.Search in Google Scholar

Giannenas I., Doukas D., Karamoutsios A., Tzora A., Bonos E., Skoufos I., Tsi-nas A., Christaki E., Tontis D., Florou-Paneri P. (2016). Effects of Enterococcus faecium, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs. Anim. Feed Sci. Technol., 220: 159–167.Search in Google Scholar

Gresse R., Chaucheyras-Durand F., Fleury M. A. (2017). Gut microbiota dysbiosis in post weaning piglets: understanding the keys to health. Trends Microbiol., 25: 851–873.Search in Google Scholar

Hanczakowska E., Szewczyk A., Świątkiewicz M., Okoń K. (2013). Short- and medium-chain fatty acids as a feed supplement for weaning and nursery pigs. Pol. J. Vet. Sci., 16: 647–654.Search in Google Scholar

Hanczakowska E., Świątkiewicz M., Natonek-Wiśniewska M., Okoń K. (2016). Medium chain fatty acids (MCFA) and/or probiotic Enterococcus faecium as a feed supplement for piglets. Livest. Sci., 192: 1–7.Search in Google Scholar

Hellweg P., Tats D., Männer K., Vahjen W., Zentek J. (2006). Impact of potassium difor-mate on gut flora of weaned piglets. Proc. Soc. Nutr. Physiol., 15: 63.Search in Google Scholar

Hijova E., Chmelarova A. (2007). Short chain fatty acids and colonic health. Bratisl. Lek. List., 108: 354–358.Search in Google Scholar

Hong S. M., Hwang J. H., Kim I. H. (2012). Effect of medium-chain triglyceride on growth performance, nutrient digestibility, blood characteristics in weanling pigs. Asian-Australas. J. Anim. Sci., 25: 1003–1008.Search in Google Scholar

Hossain M., Nargis F. (2016). Supplementation of organic acid blends in water improves growth, meat yield, dressing parameters and bone development of broilers. Bangl. J. Anim. Sci., 45: 7–18.Search in Google Scholar

Huang C., Song P., Fan P., Hou C., Thacker P., Ma X. (2015). Dietary sodium butyrate decreases post weaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. J. Nutr., 145: 2774–2780.Search in Google Scholar

Jansons I., Jemeljanovs A., Konosonoka I. H., Sterna V., Lujane B. (2011). The influence of organic acid additive, phytoadditive and complex of organic acid additive phytoadditive on pig productivity, meat quality. Agron. Res., 9: 389–394.Search in Google Scholar

Jendza J. A., Chen H. Y., Graham A. (2018). Pre-slaughter feed acidification with feed grade sodium formate reduces microbial abundance in finishing pigs. J. Anim. Sci., 96: 63–64.Search in Google Scholar

Journal of Laws (2010). No. 56, item 344. Ordinance of the Minister of Agriculture and Rural Development of 15 February 2010 on the requirements and methods of handling and maintenance of livestock animal species for which the protection standards were determined in the legal provisions of the European Union (in Polish).Search in Google Scholar

Kasprowicz-Potocka M., Frankiewicz A., Selwet M., Chilomer K. (2009). Effect of salts and organic acids on metabolite production and microbial parameters of piglets’ digestive tract. Livest. Sci., 126: 310–313.Search in Google Scholar

Kiarie E., Walsh M. C., Nyachoti C. M. (2016). Performance, digestive function and mucosal responses to selected feed additives for pigs. J. Anim. Sci., 94: 169–180.Search in Google Scholar

Kiarie E., Voth C., Wey D., Zhu C., Vingerhoeds P., Borucki S., Squires E. J. (2018). Comparative efficacy of antibiotic growth promoter and benzoic acid on growth performance, nutrient utilization, and indices of gut health in nursery pigs fed corn–soybean meal diet. Can. J. Anim. Sci., 98: 868–874.Search in Google Scholar

Kil D. Y., Kwon W. B., Kim B. G. (2011). Dietary acidifiers in weanling pig diet: a review. Rev. Colombian de Ciencias Pecuarias, 24: 231–247.Search in Google Scholar

Kim Y. Y., Kil D. Y., Oh H. K., Han I. K. (2005). Acidifier as an alternative material to antibiotics in animal feed. Asian-Australas. J. Anim. Sci., 18: 1048–1060.Search in Google Scholar

Kirchgessner M., Roth F. X. (1982). Fumaric acid as a feed additive in pig nutrition. Pig News Info., 3: 259.Search in Google Scholar

Kirsch K. (2011). The effect of organic acids used as feed additives on the nutrient conversion and bacteria population in the intestinal tract of weaning pigs. Doctoral thesis. Department of Veterinary Medicine, FreieUniversität Berlin, 2011.Search in Google Scholar

Koyuncu S., Andersson M. G., Löfström C., Skandamis P. N., Gounadaki A., Zentek J., Häggblom P. (2013). Organic acids for control of Salmonella in different feed materials. BMC Vet. Res., 9: 81.Search in Google Scholar

Kuang Y., Wang Y., Zhang Y., Song Y., Zhang X., Lin Y., Fang Z. (2015). Effects of dietary combinations of organic acids and medium chain fatty acids as a replacement of zinc oxide on growth, digestibility and immunity of weaned pigs. Anim. Feed Sci. Technol., 208: 145–157.Search in Google Scholar

Leonard F. C., Waliaa K., Lawlor P. G., Duffy G., Fanning S., Markey B. K., Brady C., Gardiner G. E., Argüello H. (2017). Investigation of in-feed organic acids as a low cost strategy to combat Salmonella in grower pigs. Prev. Vet. Med., 139: 50–57.Search in Google Scholar

Lević J., Sredanović S., Duragić O., Jakić D., Lević L. J., Pavkov S. (2007). New feed additives based on phytogenics and acidifiers in animal nutrition. Biotechnol. Anim. Husb., 23: 527–534.Search in Google Scholar

Lević J., Sinisa M., Djuragić O., Slavica S. (2008). Herbs and organic acids as an alternative for antibiotic growth-promoters. Arch. Zootech., 11: 5–11.Search in Google Scholar

Li H., Liu F., Kang L., Zheng M. (2016). Study on the buffering capacity of wort. J. Inst. Brew., 122: 138–142.Search in Google Scholar

Li J. (2017). Current status and prospects for in-feed antibiotics in the different stages of pork production – a review. Asian-Australas. J. Anim. Sci. 30: 1667–1673.Search in Google Scholar

Li M., Long S., Wang Q., Zhang L., Hu J., Yang J., Cheng Z., Piao. X. (2019). Mixed organic acids improve nutrients digestibility, volatile fatty acids composition and intestinal microbiota in growing-finishing pigs fed high-fiber diet. Asian-Australas J. Anim. Sci., 32: 856–864.Search in Google Scholar

Li Y., Zhang H., Yang L., Zhang L., Wang T. (2015). Effect of medium-chain triglycerides on growth performance, nutrient digestibility, plasma metabolites and antioxidant capacity in weanling pigs. Anim. Nutr. J., 195: 12–18.Search in Google Scholar

Liu S. D., Yun W., Lee J. H., Kwak W. G., Oh H. J., Lee C. H., Cho J. H. (2017). Effects of microencapsulated organic acids and essential oils supplementation on performance and rectal temperature in challenged weaning pigs. Anim. Prod. Sci., 57: 2504–2504.Search in Google Scholar

Liu Y., Espinosa C. D., Abelilla J. J., Casas G. A., Lagos L. V., Lee S. A., Kwon W. B., Mathai J. K., Navarro D. M. DL., Jaworski N. W., Stein H. H. (2018). Non-antibiotic feed additives in diets for pigs: A review. Anim. Nutr., 4: 113–125.Search in Google Scholar

Long S. F., Xu Y. T., Pan L., Wang Q. Q., Wang C. L., Wu J. Y., Wu Y. Y., Han Y. M., Yun C. H., Piao X. S. (2018). Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim. Feed Sci. Technol., 235: 23–32.Search in Google Scholar

Luise D., Motta V., Salvarani C., Chiappelli M., Fusco L., Bertocchi M., Maz-zoni M., Maiorano G., Leonardo N. C., Van Milgen J., Bosi P., Trevisi P. (2017). Long-term administration of formic acid to weaners: Influence on intestinal microbiota, immunity parameters and growth performance. Anim. Feed Sci. Technol., 232: 160–168.Search in Google Scholar

Lückstädt C. (2009). Acidifiers in animal nutrition. A guide for feed preservation and acidification to promote animal performance. Nottingham University Press.Search in Google Scholar

Lückstädt C., Kühlmann K. J. (2013). Dietary potassium diformate in sows during pre-farrowing till weaning: effects on piglet performance in Thailand. Proc. Conference on International Research on Food Security, Natural Resource Management and Rural Development. Tropentag, Stuttgart, 2013, pp. 1–4.Search in Google Scholar

Lückstädt C., Mellor S. (2011). The use of organic acids in animal nutrition, with special focus on dietary potassium under European and Austral-Asian conditions. Recent Adv. Anim. Nutr. Australia, 18: 123–130.Search in Google Scholar

Ma X., Fan P. X., Li L. S., Qiao S. Y., Zhang G. L., Li D. F. (2015). Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci., 90: 266–268.Search in Google Scholar

Mesonero E. J. A., vander Horst Y., Carr J., Maes D. (2016). Implementing drinking water feed additive strategies in post-weaning piglets, antibiotic reduction and performance impacts: case study. Porcine Health Manag., 2: 25.Search in Google Scholar

Mirilović M., Velebit B., Djurić S., Vejnović B., Dimitrijević M., Tajdić N., Rogožarski D. (2016). Determination of the economic effects in intensive production of piglets. Mac. Vet. Rev., 39: 233–238.Search in Google Scholar

Morel P. C. H., Chidgey K. L., Jenkinson C. M. C., Lizarraga I., Schreurs N. M. (2019). Effect of benzoic acid, sodium butyrate and sodium butyrate coated with benzoic acid on growth performance, digestibility, intestinal morphology and meat quality in grower-finisher pigs. Livest. Sci., 226: 107–113.Search in Google Scholar

Mroczek I., Frankiewicz A., Selwet M. (2005).The effect of acidifying additives on the microbiological stability of feed mixtures. J. Anim. Feed Sci., 14: 385–388.Search in Google Scholar

Mroz Z. (2005). Organic acids as potential alternatives to antibiotic growth promoters for pigs. Adv. Pork Prod., 16: 169–182.Search in Google Scholar

Nowak P., Kasprowicz-Potocka M., Zaworska A., Nowak W., Stefańska B., Sip A., Grajek W., Juzwa W., Taciak M., Barszcz M., Tuśnio A., Grajek K., Foksowicz-Flaczyk J., Frankiewicz A. (2017). The effect of eubiotic feed additives on the performance of growing pigs and the activity of intestinal microflora. Arch. Anim. Nutr., 71: 455–469.Search in Google Scholar

Nowak P., Kasprowicz-Potocka M., Zaworska A., Nowak W., Stefańska B., Sip A., Grajek W., Grajek K., Frankiewicz A. (2019). The effect of combined feed additives on growing pigs’ performance and digestive tract parameters. Ann. Anim. Sci., 19: 1–13.Search in Google Scholar

Oliveira J. J. M., Nardi V. K., Scandolera A. J., Warpechowski M. B. (2017). Acidificante e digestibilidade de nutrients emsuinosemcrescimento. Ciência Animal Brasileira, 18, e23365.Epub. https://dx.doi.org/10.1590/1089-6891v18e-26365.10.1590/1089-6891v18e-26365Search in Google Scholar

Omonijo F. A., Liu S., Hui Q., Zhang H., Lahaye L., Bodin J. C., Yang C. (2018). Thymol improves barrier function and attenuates inflammatory responses in porcine intestinal epithelial cells during lipopolysaccharide (LPS)-induced inflammation. J. Agric. Food Chem., 67: 615–624.Search in Google Scholar

Papatsiros V., Christodoulopoulos G., Filippopoulos L. C. (2012). The use of organic acids in monogastric animals (swine and rabbits). J. Cell Anim. Biol., 6: 154–159.Search in Google Scholar

Piva A., Pizzamiglio V., Morlacchini M., Tedeschi M., Piva G. (2007). Lipid microencapsulation allows slow release of organic acids and natural identical flavors along the swine intestine. J. Anim. Sci., 85: 486–493.Search in Google Scholar

Pluske J. R., Turpin D. L., Kim J. (2018). Gastrointestinal tract (gut) health in the young pig. Anim. Nutr., 4: 187–196.Search in Google Scholar

Rasschaert G., Michiels J., Tagliabue M., Missotten J., De Smet S., Heyn-drickx M. (2016). Effect of organic acids on Salmonella shedding and colonization in pigs on a farm with high Salmonella prevalence. J. Food Prot., 79: 51–58.Search in Google Scholar

Regulation (EC) no 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition.Search in Google Scholar

Rudbäck L. (2013). Organic acids in liquid feed for pigs – palatability and feed intake. PhD thesis. Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala.Search in Google Scholar

Sbardella M., Perina D. P., Andrade C., Longo F. A., Miyada V. S. (2015). Effects of a dietary added formaldehyde-propionic acid blend on feed enterobacteria counts and on growing pig performance and fecal formaldehyde excretion. Ciência Rural, Santa Maria, 45: 474–479.Search in Google Scholar

Stensland I., Kim J., Bowring B., Collins A., Mansfield J., Pluske J. (2015). A comparison of diets supplemented with a feed additive containing organic acids, cinnamaldehyde and a permeabilizing complex, or zinc oxide, on post-weaning diarrhoea, selected bacterial populations, blood measures and performance in weaned pigs experimentally infected with enterotoxigenic E. coli. Animals, 5: 1147–1168.Search in Google Scholar

Strauss G., Hayler R. (2001). Effects of organic acids on microorganisms. Kraftfutter, 4: 1–4.Search in Google Scholar

Suiryanrayna M., Ramana J. V. (2015). A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol., 45: 1–11.Search in Google Scholar

Tachedjian G., Aldunate M., Bradshaw C. S., Cone R. A. (2017). The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res. Microbiol., 168: 782–792.Search in Google Scholar

Thacker P. A. (2013). Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci. Biotechnol., 4: 35.Search in Google Scholar

Thomas L. L., Hartman A. R., Woodworth J. C., Tokach M. D., Goodband R. D., Dritz S. S., De Rouchey J. M., Mc Killigan D. M., Jones A. M. (2018). Evaluation of different combinations of medium chain fatty acids and monolaurin as a dietary additive for nursery pigs. Kansas Agric. Exp. Station Res. Rep., 4: 9.Search in Google Scholar

Thuy N. T. (2017). Effects of β-glucan, organic acids and probiotic in the diet on growth performance and health status of weanling pigs. Livest. Res. Rural Develop., 29.Search in Google Scholar

Tonel I., Pinho M., Lordelo M. M., Cunha L. F., Garres P., Freire J. P. B. (2010). Effect of butyrate on gut development and intestinal mucosa morphology of piglets. Livest. Sci., 133: 22–224.Search in Google Scholar

Torija M. J., Beltran G., Novo M., Poblet M., Rozes N., Mas A., Guillamon J. M. (2003). Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. J. Agric. Food Chem., 51: 916−922.Search in Google Scholar

Trackova M., Faldyna M., Alexa P., Sramkova-Zajacova Z., Gopfert E., Kum-prechtova D. (2014). The fects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets. J. Anim. Sci., 92: 767–774.Search in Google Scholar

Upadhaya S. D., Lee K. Y., Kim I. H. (2014). Protected organic acid blends as an alternative to antibiotics in finishing pigs. Asian-Australasian J. Anim. Sci., 27: 1600.Search in Google Scholar

Upadhaya S. D., Lee K. Y., Kim I. H. (2016). Effect of protected organic acid blends on growth performance, nutrient digestibility and faecal microflora in growing pigs. J. Appl. Anim. Res., 44: 238–242.Search in Google Scholar

Walia K., Arguello H., Lynch H., Leonard F. C., Grant J., Yearsley D., Kelly S., Duffy G., Gardiner G. E., Lawlor P. G. (2016). Effect of feeding sodium butyrate in the late finishing period on Salmonella carriage, seroprevalence and growth of finishing pigs. Prev. Vet. Med., 131: 79–86.Search in Google Scholar

Walles A. D., Allen V. M., Davies R. H. (2010). Chemical treatment of animal feed and water for the control of Salmonella. Foodborne Pathog. Dis., 7: 3–15.Search in Google Scholar

Wang Y. Y., Chang R. B., Allgood S. D., Silver W. L., Liman E. R. (2011). A TRPA1-dependent mechanism for the pungent sensation of weak acids. J. Gen. Physiol., 137: 493–505.Search in Google Scholar

Wang Y., Kuang Y., Zhang Y., Song Y., Zhang X., Lin Y., Fang Z. (2016). Rearing conditions affected responses of weaned pigs to organic acids showing a positive effect on digestibility, microflora and immunity. Anim. Sci. J., 87: 1267–1280.Search in Google Scholar

Wang Y., Chiba L. I., Huang C., Torres I. M., Wang L., Welles E. G. (2018). Effect of diet complexity, multi-enzyme complexes, essential oils, and benzoic acid on weanling pigs. Livest. Sci., 209: 32–38.Search in Google Scholar

Xiong H., Guo B., Wang Y. (2015). Butyrate enhances disease resistance of piglets through up-regulated gene expression of endogenous host defense peptides. Proc. Anim. Health: Swine Health & Transition Cows. Orlando, Florida, 272.Search in Google Scholar

Xu X., Wang H. L., Li P., Zeng Z. K., Tian Q. Y., Piao X. S., Kuang E. Y. W. (2016). A comparison of the nutritional value of organic-acid preserved corn and heat-dried corn for pigs. Anim. Feed Sci. Technol., 214: 95–103.Search in Google Scholar

Xu Y. T. Liu L., Long S. F., Pan L., Piao X. (2018). Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Anim. Feed Sci. Technol., 235: 110–119.Search in Google Scholar

Yang Y., Lee K. Y., Kim I. H. (2019). Effects of dietary protected organic acids on growth performance, nutrient digestibility, fecal microflora, diarrhea score, and fecal gas emission in weanling pigs. Can. J. Anim. Sci., 99: 514–520.Search in Google Scholar

Zeng X., Sunkara L. T., Jiang W., Bible M., Carter S., Ma X., Qiao S., Zhang G. (2013). Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS One, 8(8): e72922.Search in Google Scholar

Zentek J., Buchheit-Renko S., Ferrara F., Vahjen W., Kessel A. G. van, Pieper R. (2011). Nutritional and physiological role of medium-chain triglycerides and medium- chain fatty acids in piglets. Anim. Health Res. Rev., 12: 83–93.Search in Google Scholar

Zentek J., Ferrara F., Pieper R., Tedin L., Meyer W., Vahjen W. (2013). Effects of dietary combinations of organic acids and medium chain fatty acids on the gastrointestinal microbial ecology and bacterial metabolites in the digestive tract of weaning piglets. J. Anim. Sci., 91: 3200–3210.Search in Google Scholar

Zhao P. Y., Lan R. X., Liu W. C., Kim H. S., Kim I. H. (2016). Effect of microencapsulated blends of organic acids on growth performance, nutrient digestibility, and fecal microflora in pigs. J. Anim. Sci., 5: 477.Search in Google Scholar

Zheng-Shun W., Jian-Jun L., Xiao-Ting Z. (2012). Effects of sodium butyrate on the intestinal morphology and DNA-binding activity of intestinal nuclear factor-κB in weanling pigs. J. Anim. Vet. Adv., 11: 814–821.Search in Google Scholar

Zhou Z., Huang J., Hao H., Wei H., Zhou Y., Peng J. (2019). Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. J. Function. Foods, 52: 348–359.Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine