Otwarty dostęp

Exploring the application of composite materials in ceramic design based on fuzzy numerical analysis

   | 28 sie 2023

Zacytuj

Jabbari, M., Bulatova, R., Tokai, Y., & Bahicr, H. (2016). Ceramic tape casting: A review of current methods and trends with emphasis on rheological behavior and flow analysis. Materials Science and Engineering B, 212, 3961. Search in Google Scholar

Yang, L. K., Shen, P., & Guo, R. F. (2018). The role of TiO2 incorporation in the preparation of B4C/Al laminated composites with high strength and toughness. Ceramics International, 44(13), 15219-15227. Search in Google Scholar

Shankar, J., Kumar, A. S., & Kumar, R. V. S. (2023). Effect of sintering temperature on microstructure, dielectric and ferroelectric properties of batio3 ceramics. Ferroelectrics, 606(1), 207-218. Search in Google Scholar

Moskovskikh, D. O., Vorotilo, S., Sedegov, A. S., et al. (2020). High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering. Ceramics International, 46(11), 19008-19014. Search in Google Scholar

Wang, C., & Matthies, H. G. (2018). Hybrid evidence-and-fuzzy uncertainty propagation under a dual-level analysis framework. Fuzzy Sets and Systems, 367, 51-67. Search in Google Scholar

akemura, H., & Fukushima, H. (2022). Recent trends of advanced ceramics industry and fine ceramics roadmap 2050. International Journal of Applied Ceramic Technology. Search in Google Scholar

Han, X. Q., Lin, N., Li, A. Q., et al. (2021). Microstructure and characterization of (Ti, V, Nb, Ta)(C, N) high-entropy ceramic. Ceramics International, 47(24), 35105-35110. Search in Google Scholar

Deville, S., Meille, S., & Seuba, J. (2015). A meta-analysis of the mechanical properties of ice-templated ceramics and metals. Science & Technology of Advanced Materials, 16(4), 043501. Search in Google Scholar

Li, Z., Wang, Z., Wu, Z., et al. (2021). Phase, microstructure, and related mechanical properties of a series of (NbTaZr) C-Based high entropy ceramics. Ceramics International, 47(10), 14341-14347. Search in Google Scholar

Xiang, H. M., Xing, Y., Dai, F. Z., et al. (2021). High-entropy ceramics: Present status, challenges, and a look forward. Journal of Advanced Ceramics, 10(3), 385−441. Search in Google Scholar

Gu, J. F., Zou, J., Sun, S. K., et al. (2019). Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach. Science China Materials, 62(12), 1898−1909. Search in Google Scholar

Liu, J. X., Shen, X. Q., Wu, Y., et al. (2020). Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 9(4), 503−510. Search in Google Scholar

Wei, X. F., Liu, J. X., Bao, W., et al. (2021). High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite. Journal of the European Ceramic Society, 41(9), 4747-4754. Search in Google Scholar

Gild, J., Zhang, Y., Harrington, T., et al. (2016). High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh-temperature ceramics. Scientific Reports, 6(1), 37946. Search in Google Scholar

Sun, Q., Tan, H., Zhu, S., et al. (2021). Single-phase (Hf-Mo-Nb-Ta-Ti)C high-entropy ceramic: A potential high-temperature anti-wear material. Tribology International, 157, 106883. Search in Google Scholar

Liu, T., Qian, X., Wang, W., & Chen, Y. (2021). A ductile tearing assessment diagram to estimate load resistance versus crack extension for welded connections with surface cracks. Thin-Walled Structures, 169, 108435-. Search in Google Scholar

eISSN:
2444-8656
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics