Otwarty dostęp

Color and composition under big data technology: the art of visual communication in film art

   | 02 cze 2023

Zacytuj

Goncharov, A. V., Dainty, C. (2007). Wide-field schematic eye models with gradient-indexlens. J Opt Soc Am A Opt Image Sci Vis, 24(8), 2157-74. Search in Google Scholar

Atchison, D. A., Guo, H. (2010). Subjective blur limits for higher order aberrations. Optom Vis Sci, 87(11), 890-8. Search in Google Scholar

Hardy, J. W., Thompson, L. (1998). Adaptive Optics for Astronomical Telescopes. Oxford University Press, USA. Search in Google Scholar

Babcock, H. W. (1953). The possibility of compensating astronomical seeing. Publications of the Astronomical Society of the Pacific, 65(386), 229-236. Search in Google Scholar

Hardy, J., Lefebvre, J. et, al. (1997). Koliopoulos C. Real-time atmospheric compensation. J. Opt. Soc. Am, 67(3), 360-369. Search in Google Scholar

Rousset, G., Fontanella, J. et al. (1990). First diffraction limited astronomical images with adaptive optics. Astron. Astrophys, 230, L29–L32. Search in Google Scholar

Benedict, R., Breckinridge, J. B., Fried, D. L. (1994). Atmospheric-Compensation Technology-Introduction. Journal of the Optical Society of America-Optics Image Science and Vision. 11(2), 780. Search in Google Scholar

Smirnov, M. S. (1961). Measurement of the wave aberration of the human eye. Biophysics, 6(5-6), 776-795. Search in Google Scholar

Liang, J. & Williams, D. R. (1997). Aberrations and retinal image quality of the normal human eye. Journal of the Optical Society of America A. 14, 2873-2883. Search in Google Scholar

Piers, P. A., Fernandez, E. J., Manzanera, S., Norrby, S., Artal, P. (2004). Adaptive optics simulation of intraocular lenses with modified spherical aberration. Invest Ophthalmol Vis Sci, 45(12), 4601-4610. Search in Google Scholar

Artal, P., Chen, L., Fernández, E. J., Singer, B., Manzanera, S., Williams, D. R. (2004). Neural compensation for the eye’s optical aberrations. J Vis., 16,4(4), 281-7. Search in Google Scholar

Chen, L., Artal, P., Gutierrez, D., Williams, D. R. (2007). Neural compensation for the best aberration correction. J Vis., 23,7(10), 9.1-9. Search in Google Scholar

Li, S., Xiong, Y., Li, J., Wang, N., Dai, Y., Xue, L., Zhao, H., Jiang, W., Zhang, Y., He, J. C. (2009). Effects of monochromatic aberration on visual acuity using adaptive optics. Optom Vis Sci., 86(7), 868-74. Search in Google Scholar

Yang, B., Liang, B., Liu, L., Liao, M., Li, Q., Dai, Y., Zhao, H., Zhang, Y., Zhou, Y. (2014). Contrast sensitivity function after correcting residual wavefront aberrations during RGP lens wear. Optom Vis Sci., 91(10), 1271-7. Search in Google Scholar

Dalimier, E., Dainty, C., Barbur, J. L. (2008). Effects of higher-order aberrations on contrast acuity as a function of light level. Journal of Modern Optics. 55(4-5), 791-803. Search in Google Scholar

Chen, L., Kruger, P. B., Hofer, H., Singer, B., Williams, D. R. (2006). Accommodation with higher-order monochromatic aberrations corrected with adaptive optics. J Opt Soc Am A Opt Image Sci Vis., 23(1), 1-8. Search in Google Scholar

Fernandez, E. J., Artal, P. (2005). Study on the effects of monechromatic aberrations in the accommodation response by using adaptive optics. J Opt Soc Am A Opt Image Sci Vis, 22, 1732-1738. Search in Google Scholar

Gambra, E., Sawides, L., Dorronsoro, C., Marcos, S. (2009). Accommodative lag and fluctuations when optical aberrations are manipulated. J Vis., 9(6), 4.1-15. Search in Google Scholar

Piers, P. A., Manzanera, S., Prieto, P. M., Gorceix, N., Artal, P. (2007). Use of adaptive optics to determine the optimal ocular spherical aberration. J Cataract Refract Surg, 33(10), 1721-6. Search in Google Scholar

Sawides, L., Gambra, E., Pascual, D., Dorronsoro, C., Marcos, S. (2010). Visual performance with real-life tasks under adaptive-optics ocular aberration correction. J Vis., 1;10(5), 19. Search in Google Scholar

Moreno-Barriuso, E., Lloves, J. M., Marcos, S., Navarro, R., Llorente, L., Barbero, S. (2001). Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Invest Ophthalmol Vis Sci., 42(6), 1396-403. Search in Google Scholar

Miller, J. M., Anwaruddin, R., Straub, J., Schwiegerling, J. (2002). Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas. J Refract Surg., 5, 579–583. Search in Google Scholar

Wang, Y., Zhao, K. X., He, J. C., Jin, Y., Zuo, T. (2007). Ocular higher-order aberrations features analysis after corneal refractive surgery. Chin Med J (Engl). 20;120(4), 269-73. Search in Google Scholar

Yang, X., Wang, Y., Zhao, K., Fang, L. (2011). Comparison of higher-order aberration and optical quality after Epi-LASIK and LASIK for myopia. Graefes Arch Clin Exp Ophthalmol. 249(2), 281-8. Search in Google Scholar

Stillitano, I. G., Chalita, M. R., Schor, P., Maidana, E., Lui, M. M., Lipener, C., Hofling-Lima, A. L. (2007). Cornealchanges and wavefront analysis after orthokeratology fitting test. Am J Ophthalmol., 144(3), 378-86. Search in Google Scholar

Choi, J., Wee, W. R., Lee, J. H., Kim, M. K. (2007). Changes of ocular higher order aberration in on- and off-eye of rigid gas permeable contact lenses. Optom Vis Sci, 84(1), 42-51. Search in Google Scholar

Dai, Y., Zhao, L., Xiao, F., et al. (2015). Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror. 54(5), 979-985. Search in Google Scholar

Charman, W. N., Heron, G. (1998). Fluctuations in accommodation: a review. Ophthalmic & Physiological Optics, 8(2), 153-64. Search in Google Scholar

ediatric Eye Disease Investigator Group. (2011). Randomized trial to evaluate combined patching and atropine for residual amblyopia. Archives of ophthalmology, 129(7), 960-962. Search in Google Scholar

Prakash, G., Sharma, N., Chowdhary, V., et al. (2007). Association between amblyopia and higher-order aberrations. Journal of Cataract & Refractive Surgery. 33(5), 901–904. Search in Google Scholar

eISSN:
2444-8656
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics