Otwarty dostęp

AtanK-A New SVM Kernel for Classification

 oraz    | 31 gru 2021

Zacytuj

V. N. Vapnik, 1. (1998), The Nature of Statistical Learning Theory, 2nd ed., Springer-Verlag, New York, USA, pp. 493−520. Search in Google Scholar

B. Schölkopf, A.J. Smola, K.-R.Müller, 2. (1999), Kernel principal component analysis,” in: M. Press (Ed.), Advances in kernel methods: support vector learning, pp.327−352. Search in Google Scholar

J. Liu, X Liu, J Xiong, et al., 3. (2020), Optimal Neighborhood Multiple Kernel Clustering with Adaptive Local Kernels. IEEE Transactions on Knowledge and Data Engineering, pp. 99. Search in Google Scholar

S. Mika, et al.,4. (1999), Fisher discriminant analysis with kernels, Neural Networks for Signal Processing IX”, in: Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp.41−48. Search in Google Scholar

D.R. Hardoon, S. Szedmak, J. Shawe-Taylor, 5. (2004), Canonical correlation analysis: an overview with application to learning method, Neural Computation, 16(12), pp.2639−2664. Search in Google Scholar

G. Baudat, F. Anouar, 6. (2000), Generalized discriminant analysis using a kernel approach, Neural Computation, 12(10), pp.2385−2404. Search in Google Scholar

J. Shawe-Taylor, N. Cristianini, 7. (2004), Kernel Methods for Pattern Analysis, Cambridge University Press, Cambridge, pp. 25−46. Search in Google Scholar

L. Sun, et al., 8. (2018), Research on parameter selection method for support vector machines, Applied Intelligence, 48, pp. 331−342. Search in Google Scholar

Y. Wang, et al., 9. (2017), Multiple kernel learning with hybrid kernel alignment maximization, Pattern Recognition, 70, pp. 104−111. Search in Google Scholar

S. Yin, J. Yin, 10. (2016), Tuning kernel parameters for SVM based on expected square distance ratio, Information Sciences, 370-371, pp. 92−102. Search in Google Scholar

F. Ong, P. Milanfar and P. Getreuer, 11. (2019), Local kernels that approximate bayesian regularization and proximal operators, IEEE Transactions on Image Processing, 28(6), pp. 3007−3019. Search in Google Scholar

T. Wang, W. Li, 12. (2018), Kernel learning and optimization with Hilbert-Schmidt independence criterion, International Journal of Machine Learning and Cybernetics, 9 pp. 1707−1717. Search in Google Scholar

J. Cervantes, X. Li, W. Yu, 13. (2014), Imbalanced data classification via support vector machines and genetic algorithms, Connection Science, 26(4), pp. 335−348. Search in Google Scholar

M. N. Kapp, R. Sabourin, P. Maupin, 14. (2012), A dynamic model selection strategy for support vector machine classifiers, Applied Soft Computing, 12(8), pp. 2550−2565. Search in Google Scholar

C. Cortes, M. Mohri, A. Rostamizadeh, 15. (2010), Two-stage learning kernel algorithms, in: Proceedings of the 27th International Conference on Machine Learning, pp. 239−246. Search in Google Scholar

S. Niazmardi, A. Safari, S. Homayouni, 16. (2017), Similarity-based multiple kernel learning algorithms for classification of remotely sensed images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), pp. 2012−2021. Search in Google Scholar

R. Kannao, P. Guha, 17. (2017), Success based locally weighted Multiple Kernel combination,” Pattern Recognition, 68, pp. 38−51. Search in Google Scholar

A. Jacot, F. Gabriel, C. Hongler, 18. (2018), Neural tangent kernel: convergence and generalization in neural networks, in: Advances in neural information processing systems, pp. 8571−8580. Search in Google Scholar

J. Basak, 19. (2008), A least square kernel machine with box constraints, in: Proceeding of the International Conference on Pattern Recognition, pp. 1−4. Search in Google Scholar

N. E. Ayat, et al. 20. (2001), KMOD-A new support vector machine kernel with moderate decreasing for pattern recognition, application to digit image recognition, in: Proceeding of the 6th International Conference on document analysis recognition, pp. 1215−1221. Search in Google Scholar

R. Zhang, W. Wang, 21. (2011), Facilitating the applications of support vector machine by using a new kernel, application to digit image recognition, Expert Systems with Applications, 38(11), pp. 14225−14230. Search in Google Scholar

J. Zhao, et al., 22. (2013), An adaptive support vector regression based on a new sequence of unified orthogonal polynomials, Pattern Recognition, 46(3), pp. 899−913. Search in Google Scholar

V. H. Moghaddam, J. Hamidzadeh, 23. (2013), New Hermite orthogonal polynomial kernel and combined kernels in support vector machine classifier, Pattern Recognition, 60, pp. 921−935. Search in Google Scholar

M. Tian, W. Wang, 24. (2017), Some sets of orthogonal polynomial kernel functions, Applied Soft Computing, 61, pp. 742−756. Search in Google Scholar

A. Rakotomamonjy, et al., 25. (2008), SimpleMKL, Journal of Machine Learning Research, 9, pp.2491−2521. Search in Google Scholar

D. Dua, C. Graff, 26. (2019), UCI Machine Learning Repository,http://archive.ics.uci.edu/ml, Irvine, CA: University of California, School of Information and Computer Science. Search in Google Scholar

M. Gönen, E. Alpaydı(i)n, 27. (2011), Multiple kernel learning algorithms, Journal of Machine Learning Research, 12, pp. 2211–2268. Search in Google Scholar

eISSN:
2444-8656
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics