Otwarty dostęp

On Solutions of Fractional order Telegraph Partial Differential Equation by Crank-Nicholson Finite Difference Method


Zacytuj

Introduction and Preliminaries

Fractional differential equations have many implementations in finance, [1, 2, 3]. These type engineering, physics and seismology equations are solvable with restpect to variables time and space. Some difference schemes are given for the space-fractional heat equations in [4, 5, 6, 7, 18, 19, 20, 21, 22]. A new difference scheme for time fractional heat equation based on the Crank-Nicholson method has been presented in [5]. Orsingher and Beghin [14] have presented the Fourier transform of the fundamental solutions to time-fractional telegraph equations of order 2α. In [15], the time-fractional advection dispersion equations have been presented. In [16], Liu has studied fractional difference approximations for time-fractional telegraph equation. Modanli and Akgül [12] have worked the second-order partial differential equations by two accurate methods. Finally, Modanli and Akgul [13] have solved the fractional telegraph differential equations by theta-method. For more details see [23, 24, 25, 26, 27].

In this study, the Crank-Nicholson difference schemes method has been applied to fractional derivatives to get numerical results.

Now, we examine the following fractional telegraph equations {2u(t,x)t2+α1u(t,x)tα12u(t,x)x2+u(t,x)=f(t,x),0<x<L,0<t<T,1<α<2u(0,x)=r1(x),ut(0,x)=r2(x),0tT,u(t,XL)=u)t,XR)=0,XL<x<XR.\left\{ {\matrix{ {{{{\partial ^2}u(t,x)} \over {\partial {t^2}}} + {{{\partial ^{\alpha - 1}}u(t,x)} \over {\partial {t^{\alpha - 1}}}} - {{{\partial ^2}u(t,x)} \over {\partial {x^2}}} + u(t,x) = f(t,x),} \hfill \cr {0 < x < L,0 < t < T,1 < \alpha < 2} \hfill \cr {u(0,x) = {r_1}(x),{u_t}(0,x) = {r_2}(x),0 \le t \le T,} \hfill \cr {u(t,{X_L}) = u{\rm{(}}t,{X_R}{\rm{) = 0,}}\,{X_L} < x < {X_R}.} \hfill \cr } } \right.

Here, r1(x), r2(x) are smooth function defined with the space [0,T ], f (t,x) is smooth function defined with the space (0,L) × (0,t) and u(t,x) is unknown function with the domain [0,L] × [0,T ]. For the equation (1), the Crank-Nicholson finite difference scheme method is applied. With using this method, obtained numerical results are very good and efficient for given examples.

Definition 1

The Caputo fractional derivative Dtαu(t,x)D_t^\alpha u\left( {t,x} \right) (t,x) of order α with respect to time is defined as: αu(t,x)tα=Dtαu(t,x)=1Γ(nα)0t1(tp)αn+1αu(p,x)pαdp,(n1<α<n)\matrix{ {{{{\partial ^\alpha }u(t,x)} \over {\partial {t^\alpha }}} = D_t^\alpha u(t,x)} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over {\Gamma (n - \alpha )}}\int\limits_0^t {{1 \over {{{(t - p)}^{\alpha - n + 1}}}}{{{\partial ^\alpha }u(p,x)} \over {\partial {p^\alpha }}}dp,(\,n - 1 < \alpha < n)} } \hfill \cr } and for α = n ∈ N defined as: Dtαu(t,x)=αu(t,x)tα=nu(t,x)tn.D_t^\alpha u(t,x) = {{{\partial ^\alpha }u(t,x)} \over {\partial {t^\alpha }}} = {{{\partial ^n}u(t,x)} \over {\partial {t^n}}}.

Definition 2

First-order approach difference method for the computation of the problem (1) has been presented as: DtαUnkgατj=0k1bj(α)(UnkjUnkj1),D_t^\alpha U_n^k \cong g\alpha \tau \sum\limits_{j = 0}^{k - 1} {b_j^{(\alpha )}} (U_n^{k - j} - U_n^{k - j - 1}), where gα,τ=τ2αΓ(3α){g_{\alpha ,\tau }} = {{{\tau ^{2 - \alpha }}} \over {\Gamma \left( {3 - \alpha } \right)}} and bj(α)=(j+1)2αj2αb_j^{(\alpha )} = {\left( {j + 1} \right)^{2 - \alpha }} - {j^{2 - \alpha }}.

Next section, we shall give Crank-Nicholson difference scheme for fractional order telegraph differential equation.

Crank-Nicolson Difference Scheme and its Stabilty

Using the formula (3) and definition of Crank-Nicholson first order difference schemes, we can construct the following difference scheme formula for (1) as: {unk+12unk+unk1τ2+gα,τj=0k1bj(α)(unkjunkj1)+12(unk+1+unk)1h2((un+1k+12unk+1+un1k+1)+(un+1k2unk+un1k)=fnk,fnk=f(tk,xn),1<α<2,un0=r1(xn),un1un0τ=r2((xn),0nM,u0k=uMk=0,0kN.\left\{ {\matrix{ {{{u_n^{k + 1} - 2u_n^k + u_n^{k - 1}} \over {{\tau ^2}}} + g\alpha ,\tau \sum\limits_{j = 0}^{k - 1} {b_j^{(\alpha )}\,(u_n^{k - j}} - u_n^{k - j - 1}) + {1 \over 2}(u_n^{k + 1} + u_n^k)} \hfill \cr { - {1 \over {{h^2}}}(\left( {u_{n + 1}^{k + 1} - 2u_n^{k + 1} + u_{n - 1}^{k + 1}} \right) + \left( {u_{n + 1}^k - 2u_n^k + u_{n - 1}^k} \right) = f_n^k,} \hfill \cr {f_n^k = f({t_k},{x_n}),\,1 < \alpha < 2,} \hfill \cr {u_n^0 = {r_1}({x_n}),\,{{u_n^1 - u_n^0} \over \tau } = {r_2}(({x_n}),\,0 \le n \le M,} \hfill \cr {u_0^k = u_M^k = 0,0 \le k \le N.} \hfill \cr } } \right.

The formula (4) can be rewriten as: {(12h2)un+1k+(12h2)un+1k+1+(1τ2)unk1+(2τ2+1h2+12)unk+(1τ2+1h2+12)unk+1+(12h2)un1k+(12h2)un1k+1+12(unk+1+unk)+gα,τj=0kbj(α)(unkjunkj1)τgα,τbkr2(xn)=fnk,1<α<2,fnk=f(tk,xn),un0=r1(xn),un1un0τ=r2((xn),0nM,u0k=uMk=0,0kN.\left\{ {\matrix{ {( - {1 \over {2{h^2}}})u_{n + 1}^k + ( - {1 \over {2{h^2}}})u_{n + 1}^{k + 1} + ({1 \over {{\tau ^2}}})u_n^{k - 1} + ( - {2 \over {{\tau ^2}}} + {1 \over {{h^2}}} + {1 \over 2})u_n^k} \hfill \cr { + ( - {1 \over {{\tau ^2}}} + {1 \over {{h^2}}} + {1 \over 2})u_n^{k + 1} + ( - {1 \over {2{h^2}}})u_{n - 1}^k + ( - {1 \over {2{h^2}}})u_{n - 1}^{k + 1}} \hfill \cr { + {1 \over 2}(u_n^{k + 1} + u_n^k) + g\alpha ,\tau \sum\limits_{j = 0}^k {b_j^{(\alpha )}(} u_n^{k - j} - u_n^{k - j - 1})} \hfill \cr { - \tau {g_{\alpha ,\tau }}{b_k}{r_2}({x_n}) = f_n^k,1 < \alpha < 2,} \hfill \cr {f_n^k = f({t_k},{x_n}),} \hfill \cr {u_n^0 = {r_1}({x_n}),{{u_n^1 - u_n^0} \over \tau } = {r_2}(({x_n}),\,0 \le n \le M,} \hfill \cr {u_0^k = u_M^k = 0,0 \le k \le N.} \hfill \cr } } \right.

We can write the above system in matrix form as Aun+1+Bun+Cun1=ϕn,A{u_{n + 1}} + B{u_n} + C{u_{n - 1}} = {\varphi _n}, where un=[un0,un1,,unN],ϕn=[ϕn0,ϕn1,,ϕnN]T{u_n} = \left[ {u_n^0,u_n^1, \ldots ,u_n^N} \right],{\varphi _n} = {\left[ {\varphi _n^0,\varphi _n^1, \ldots ,\varphi _n^N} \right]^T} and ϕnk=f(tk,xn)+τgα,τbkr2(xn)\varphi _n^k = f\left( {{t_k},{x_n}} \right) + \tau {g_{\alpha ,\tau }}{b_k}{r_2}\left( {{x_n}} \right). Here A(N+1)×(N+1) and B(N+1)×(N+1) are the matrices of the following form, A=12h2[000000011000000001000000],A = - {1 \over {2{h^2}}}\left[ {\matrix{ 0 & 0 & 0 & \ldots & 0 & 0 & 0 \cr 0 & 1 & 1 & \ldots & 0 & 0 & 0 \cr \cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \cr \cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \cr \cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \cr 0 & 0 & 0 & \ldots & 0 & 0 & 1 \cr 0 & 0 & 0 & \ldots & 0 & 0 & 0 \cr } } \right],

B=[1000ab0gα,τb+gα,τc0b1gα,τa+gα,τ(b1b0)b+gα,τ0bk1gα,τ(bk2bk3)gα,τ(bk3bk4)gα,τcbkgα,τ(bkbk1)gα,τ(bk1bk2)gα,τb+b0gα,τ]B = \left[ {\matrix{ 1 & 0 & 0 & \ldots & 0 \cr {a - {b_0}{g_{\alpha ,\tau }}} & {b + {g_{\alpha ,\tau }}} & c & \ldots & 0 \cr { - {b_1}{g_{\alpha ,\tau }}} & {a + {g_{\alpha ,\tau }}\left( {{b_1} - {b_0}} \right)} & {b + {g_{\alpha ,\tau }}} & \ldots & 0 \cr \cdot & \cdot & \cdot & \ldots & \cdot \cr \cdot & \cdot & \cdot & \ldots & \cdot \cr \cdot & \cdot & \cdot & \ldots & \cdot \cr { - {b_{k - 1}}{g_{\alpha ,\tau }}} & {\left( {{b_{k - 2}} - {b_{k - 3}}} \right){g_{\alpha ,\tau }}} & {\left( {{b_{k - 3}} - {b_{k - 4}}} \right){g_{\alpha ,\tau }}} & \ldots & c \cr { - {b_k}{g_{\alpha ,\tau }}} & {\left( {{b_k} - {b_{k - 1}}} \right){g_{_{\alpha ,\tau }}}} & {\left( {{b_{k - 1}} - {b_{k - 2}}} \right){g_{\alpha ,\tau }}} & \ldots & {b + {b_0}{g_{\alpha ,\tau }}} \cr } } \right] where a=1τ2,b=2τ2+1h2+12a = {1 \over {{\tau ^2}}},b = - {2 \over {{\tau ^2}}} + {1 \over {{h^2}}} + {1 \over 2} and c=1τ2+1h2+12c = {1 \over {{\tau ^2}}} + {1 \over {{h^2}}} + {1 \over 2}.

Then we have un=αn+1un+1+|βn+1,1kM.{u_n} = {\alpha _{n + 1}}{u_{n + 1}} + |{\beta _{n + 1}},\,1 \le k \le M.

Next we should determine the matrices αn+1 and β n+1 above. Using the Dirichlet boundary conditition u(0,t)=u(0,L)=0,0tT,u\left( {0,t} \right) = u\left( {0,L} \right) = 0,0 \le t \le T, we obtain u0 = α1u1 + β 1. From that, we can choose α1 = O(N+1)×(N+1) and β1 = ON+1). Substitute un = αn+1un+1 + β n+1 and un−1 = αnun + β n into the equation (7), then (A+Bαn+1+Aαnαn+1)un+1+(Bβn+1+Aαnβn+1+Aβn)=ϕn.\left( {A + B{\alpha _{n + 1}} + A{\alpha _n}{\alpha _{n + 1}}} \right){u_{n + 1}} + \left( {B{\beta _{n + 1}} + A{\alpha _n}{\beta _{n + 1}} + A\beta n} \right) = {\varphi _n}.

Thus, we get A+Bαn+1+Aαnαn+1=0,Bβn+1+Aαnβn+1+Aβn=ϕn.\matrix{ {A + B{\alpha _{n + 1}} + A{\alpha _n}{\alpha _{n + 1}} = 0,} \cr {B{\beta _{n + 1}} + A{\alpha _n}{\beta _{n + 1}} + A\beta n = {\varphi _n}.} \cr }

Thus, we obtain the following equalities αn+1=(B+Aαn)1A,βn+1=(B+Aαn)1(ϕnAβn),\matrix{ {{\alpha _{n + 1}} = - {{\left( {B + A{\alpha _n}} \right)}^{ - 1}}A,} \hfill \cr {{\beta _{n + 1}} = {{\left( {B + A{\alpha _n}} \right)}^{ - 1}}\left( {{\varphi _n} - A\beta n} \right),} \hfill \cr } where 1 ≤ n ≤ M.

For the stability, implementing the technique of analyzing the eigenvalues of the iteration matrices of the schemes.

Let ρ(A) be the spectral radius of a matrix A, which indicates the maximum of the absolute value of the eigenvalues of the matrix A. We can write the following results.

Theorem 1

The difference scheme (5) is stable.

Proof

From the method [15], we should prove that ρ(αn) < 1, 1 ≤ n ≤ M.ρ(α1)=0<1isclearly.ρ(α2)=B1AB1A=1min1kN1{|akk|mk,m=1N1|akm|}A=|12h2|+|12h2||1τ2+1h2+12+τ1αΓ(3α)|=1h22τ2+1h2+12+τ1αΓ(3α)1,for12+1h2τ2αΓ(3α)2τ20..\matrix{ {\rho \left( {{\alpha _1}} \right) = 0 < 1\,{\rm{is}}\,{\rm{clearly}}{\rm{.}}} \hfill \cr {\rho \left( {{\alpha _2}} \right) = \left\| { - {B^{ - 1}}A} \right\| \le \left\| { - {B^{ - 1}}} \right\|\left\| A \right\| = {1 \over {\mathop {\min }\limits_{1 \le k \le N - 1} \left\{ {\left| {{a_{kk}}} \right| - \sum\limits_{\scriptstyle m \ne k, \hfill \atop \scriptstyle m = 1 \hfill} ^{N - 1} {\left| {{a_{km}}} \right|} } \right\}}}\left\| A \right\|} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {{\left| { - {1 \over {2{h^2}}}} \right| + \left| { - {1 \over {2{h^2}}}} \right|} \over {\left| { - {1 \over {{\tau ^2}}} + {1 \over {{h^2}}} + {1 \over 2} + {{\tau 1 - \alpha } \over {\Gamma (3 - \alpha )}}} \right|}} = {{{1 \over {{h^2}}}} \over { - {2 \over {{\tau ^2}}} + {1 \over {{h^2}}} + {1 \over 2} + {{\tau 1 - \alpha } \over {\Gamma (3 - \alpha )}}}} \le 1,\,{\rm{for}}\,{1 \over 2} + {1 \over {{h^2}}}{{{\tau ^{2 - \alpha }}} \over {\Gamma (3 - \alpha )}} - {2 \over {{\tau ^2}}} \ge 0..} \hfill \cr }

If ρ(αn) < 1, let us calculate ρ(αn+1). A=[00000001h22τ2+1h2+12+τ1αΓ(3α)12h2αn2,21000000000000001h22τ2+1h2+12+τ1αΓ(3α)12h2αnN+1,N+1].A = - \left[ {\matrix{ 0 & 0 & 0 & \ldots & 0 & 0 & 0 \cr 0 & {{{{1 \over {{h^2}}}} \over { - {2 \over {{\tau ^2}}} + {1 \over {{h^2}}} + {1 \over 2} + {{{\tau ^{1 - \alpha }}} \over {\Gamma (3 - \alpha )}} - {1 \over {2{h^2}}}{\alpha _{{n_{2,2}}}}}}} & 1 & \ldots & 0 & 0 & 0 \cr \cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \cr \cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \cr \cdot & \cdot & \cdot & \ldots & \cdot & \cdot & \cdot \cr 0 & 0 & 0 & \ldots & 0 & 0 & 0 \cr 0 & 0 & 0 & \ldots & 0 & 0 & {{{{1 \over {{h^2}}}} \over { - {2 \over {{\tau ^2}}} + {1 \over {{h^2}}} + {1 \over 2} + {{{\tau ^{1 - \alpha }}} \over {\Gamma (3 - \alpha )}} - {1 \over {2{h^2}}}{\alpha _{{n_{N + 1,N + 1}}}}}}} \cr } } \right].

We know that αni = ρ(αn) and 0 ≤ ρ(αn) < 1 for 2 ≤ i ≤ N + 1. Then, we can obtain that ρ(αn+1) < 1. As a result, we obtain the desired result with induction.

Remark 2

Using Matlab programming for N = M = 10, α = 1.5,0 ≤ t ≤ 1, 0 ≤ x ≤ π and h=πMh = {\pi \over M}, tau=1Ntau = {1 \over N}, we obtain the following spectral radius of a matrix as:

ρ (α1) = 0, ρ(α2) = 0.0482, ρ(α3) = 0.0484, ρ(α4) = 0.0485, ρ(α5) = 0.0482, ρ(α6) = 0.0487, ρ(α7) = 0.0487, ρ(α8) = 0.0475, ρ(α9) = 0.0487 and ρ(α10) = 0.0486.

These final results prove the stability estimation of the Theorem 1.

Remark 3

Applying the method in [16, 17], we can get the convergence of the method from stability and consistency of the proposed method.

Now, we give numerical applications for the fractional telegraph partial differential equation by Crank-Nicholson method.

Numerical implementation
Example

We take into consideration the following fractional telegraph partial differential equation: {2u(t,x)t2+α1u(t,x)tα12u(t,x)x2+u(t,x)=sinx(6t+6t4αΓ(5α)+2(t3+1))0<x<π,0<t<1,1<α<2u(0,x)=sinx,ut(0,x)=0,0t1,u(t,0)=u)t,π)=0,0xπ.\left\{ {\matrix{ {{{{\partial ^2}u(t,x)} \over {\partial {t^2}}} + {{{\partial ^{\alpha - 1}}u(t,x)} \over {\partial {t^{\alpha - 1}}}} - {{{\partial ^2}u(t,x)} \over {\partial {x^2}}} + u(t,x) = \sin \,x\,(6t + 6{{{t^{4 - \alpha }}} \over {\Gamma (5 - \alpha )}} + 2({t^3} + 1))} \hfill \cr {0 < x < \pi ,0 < t < 1,1 < \alpha < 2} \hfill \cr {u(0,x) = \sin \,x,\,{u_t}(0,x) = 0,0 \le t \le 1,} \hfill \cr {u(t,0) = u{\rm{(}}t,\pi {\rm{) = 0,}}\,0 \le x \le \pi .} \hfill \cr } } \right.

The exact solution is given as u(t,x) = (t3 + 1)sinx. We implement difference schemes method to solve the problem. We utilize a procedure of modified Gauss elimination method for difference equation (8). We obtain the maximum norm of the error of the numerical solution by: ε=max|u(t,x)u(tk,xn)|n=0,1,,Mk=0,1,2,,N\eqalign{ & \matrix{ {\varepsilon = } & {\max } & {\left| {u(t,x) - u({t_k},{x_n})} \right|} \cr } \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,n = 0,1, \ldots ,M \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,k = 0,1,2, \ldots ,N \cr} where unk=u(tk,xn)u_n^k = u\left( {{t_k},{x_n}} \right) is the approximate solution. The error analysis in Table 1 gives our error analysis for difference schemes method.

Error Analysis

τ=1N,h=piM\tau = {1 \over N},\,h = {{pi} \over M}
The difference scheme (8)In method [13]
α
N = M = 401.50.00400.0242
N = M = 801.55.4707 × 10−40.0118
N = M = 1601.50.00220.0058
N = 100, M = 101.17.0178 × 10−4
1.50.0045
1.90.0093
N = 225,M = 151.13.4496 × 10−4
1.50.0040
1.90.0083
N = 400,M = 201.12.0762 × 10−4
1.50.0034
1.90.0079

We have compared Crank-Nicholson finite difference scheme method by the theta method [13] for the variable values N = M = 40,80,160. From these comparisons, we see that this method is more effective then the method used in [13].

Conclusion

In this work, stability estimates were presented for fractional telegraph differential equations. Stability inequalities were given for the difference schemes method. We applied the difference schemes-method for investigating fractional telegraph partial differential equations. Approximate solutions were obtained by this method. MATLAB software program was utilized for all results.

eISSN:
2444-8656
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics