Otwarty dostęp

Construction of Multi-Channel Teaching Effect Evaluation System Based on Deep Learning in the Era of Education Informatization

 oraz   
26 wrz 2025

Zacytuj
Pobierz okładkę

Figure 1.

RBF neural network structure
RBF neural network structure

Figure 2.

Improves the pso algorithm to optimize the RBF network framework
Improves the pso algorithm to optimize the RBF network framework

Figure 3.

Comparison of the sample output results of different algorithms
Comparison of the sample output results of different algorithms

Figure 4.

Different algorithm training sample output error contrast
Different algorithm training sample output error contrast

Figure 5.

Comparison of test sample output of different algorithms
Comparison of test sample output of different algorithms

Figure 6.

Test sample output error comparison of different algorithms
Test sample output error comparison of different algorithms

Figure 7.

The number of neurons in the hidden layer is adjusted
The number of neurons in the hidden layer is adjusted

Figure 8.

The dynamic curve of the approximation error
The dynamic curve of the approximation error

Channel teaching evaluation index system

Primary indicator Secondary indicator
Background evaluation Target setting
Faculty
Student capacity
Input evaluation Facility resources
Teacher reserve
Course preparation
Process evaluation Teacher performance
Student performance
Programme implementation
Result evaluation Teacher development
Student growth
Overall effect

The number of questionnaires and the results of experts’ evaluation

Course name Questionnaire distribution Expert evaluation results
3D animation design and production 100 Excellence
China modern history 100 Good
College students mental health education 100 Medium
Gem appreciation 100 Qualify
National music appreciation 100 Out of line
College students’ artistic appreciation 100 Good
Tot 600

According to the questionnaire obtained

Courses Serial number Evaluation index Evaluation grade Quantitative result
X1 X2 X3 …… X12
3D animation design and production 1 3 4 3 …… 3 Excellence 0.95
2 4 4 3 …… 3 Excellence 0.95
3 4 3 3 …… 4 Excellence 0.95
…… …… …… …… …… …… …… ……
100 3 3 4 …… 3 Excellence 0.95
China modern history 1 4 3 3 …… 3 Good 0.85
2 4 4 3 …… 3 Good 0.85
3 3 4 4 …… 3 Good 0.85
…… …… …… …… …… …… …… ……
100 3 4 3 …… 4 Good 0.85
College students mental health education 1 2 2 3 …… 3 Medium 0.75
2 3 3 2 …… 2 Medium 0.75
3 3 3 3 …… 2 Medium 0.75
…… …… …… …… …… …… …… ……
100 2 3 2 …… 2 Medium 0.75
Gem appreciation 1 1 1 2 …… 1 Qualify 0.65
2 1 1 2 …… 2 Qualify 0.65
3 1 1 1 …… 2 Qualify 0.65
…… …… …… …… …… …… …… ……
100 2 2 2 …… 1 Qualify 0.65
National music appreciation 1 1 0 1 …… 1 Out of line 0.3
2 1 1 0 …… 1 Out of line 0.3
3 1 0 0 …… 0 Out of line 0.3
…… …… …… …… …… …… …… ……
100 0 0 1 …… 0 Out of line 0.3
College students’ artistic appreciation 1 4 3 2 …… 3 Good 0.85
2 4 2 2 …… 4 Good 0.85
3 4 3 3 …… 3 Good 0.85
…… …… …… …… …… …… …… ……
100 4 3 2 …… 2 Good 0.85

Comparison of performance indicators of different algorithms

Algorithm Training error (RMSE) Test error (RMSE) The number of hidden layers of neurons Training time/s Test time/s
GA-RBF 10.7415 10.9745 12 955.4 0.0033
APSO-RBF 8.1544 8.1145 11 914.2 0.0032
Improved PSO-RBF 7.0025 7.0128 9 905.1 0.0028

Sample training results

Courses Serial number Actual output Expected output Training results Expert outcome
College students’ artistic appreciation 1 0.8541 0.85 Good Good
2 0.8564 0.85 Good Good
3 0.8451 0.85 Good Good
…… …… …… …… ……
100 0.8459 0.85 Good Good
Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne