Otwarty dostęp

Analysis of the construction and application effect of ophthalmic care service model based on telemedicine technology

 oraz   
19 mar 2025

Zacytuj
Pobierz okładkę

Figure 1.

Remote diagnosis flowchart
Remote diagnosis flowchart

Figure 2.

Flow chart of gray Wolf algorithm
Flow chart of gray Wolf algorithm

Figure 3

Correlation between diabetic retinopathy and glaucoma
Correlation between diabetic retinopathy and glaucoma

Figure 4.

Diabetic retinopathy and age-related macular degeneration
Diabetic retinopathy and age-related macular degeneration

Figure 5.

Accuracy and loss values of training set and validation set
Accuracy and loss values of training set and validation set

Performance comparison results of different models

Model Training accuracy/% Verification accuracy/% AUC/% F1/% Number of training parameters
ResNet50 - 91.93 74.32 88.24 >8.6M
DenseNet121 - - 79.35 89.32 >27.80M
M2LC-Net 98.10 92.46 84.24 86.13 >29.35M
M2LC-Net without CAM 99.16 94.86 88.35 87.35 2.97M

Experimental results of different Dropout rates

Discard rate Accuracy/% F1-score/% Kappa/% AUC/%
0.1 75.48 91.54 71.08 96.38
0.2 78.53 92.43 73.28 97.93
0.3 74.25 93.24 74.18 98.24
0.4 76.35 92.93 74.01 97.24
0.5 78.24 94.32 75.23 93.99
0.6 77.24 94.03 74.26 94.72
0.7 76.35 95.36 71.24 92.46
0.8 76.32 94.11 74.29 94.24
0.9 70.36 90.24 68.92 92.53

Class-Wise performance of M2LC-Net mode

Category Accuracy rate Precision rate Sensitivity Specificity
Normal 0.58 0.61 0.48 0.69
Diabetic retinopathy 0.71 0.46 0.49 0.84
Glaucoma 0.88 0.25 0.21 0.93
Cataract 0.99 0.74 0.83 0.95
Age-related macular degeneration 0.97 0.61 0.21 0.95
Hypertensive retinopathy 0.94 0.18 0.07 0.91
Nearsightedness 0.98 0.73 0.94 0.99
Other abnormal lesions 0.81 0.38 0.37 0.87
Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne