This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Hu, H., Gao, H., Li, Z., & Zhu, Y. (2017, June). A sub 6GHz massive MIMO system for 5G new radio. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1-5). IEEE.HuH.GaoH.LiZ.ZhuY. (2017, June). A sub 6GHz massive MIMO system for 5G new radio. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1-5). IEEE.Search in Google Scholar
Chataut, R., & Akl, R. (2020). Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction. Sensors, 20(10), 2753.ChatautR.AklR. (2020). Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction. Sensors, 20(10), 2753.Search in Google Scholar
Busari, S. A., Huq, K. M. S., Mumtaz, S., Dai, L., & Rodriguez, J. (2017). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials, 20(2), 836-869.BusariS. A.HuqK. M. S.MumtazS.DaiL.RodriguezJ. (2017). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials, 20(2), 836-869.Search in Google Scholar
Liu, Y., Zhang, S., Gao, F., Ma, J., & Wang, X. (2020). Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system. IEEE Journal on Selected Areas in Communications, 38(9), 1994-2009.LiuY.ZhangS.GaoF.MaJ.WangX. (2020). Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system. IEEE Journal on Selected Areas in Communications, 38(9), 1994-2009.Search in Google Scholar
Shen, Z., Xu, K., & Xia, X. (2021). Beam-domain anti-jamming transmission for downlink massive MIMO systems: A Stackelberg game perspective. IEEE Transactions on Information Forensics and Security, 16, 2727-2742.ShenZ.XuK.XiaX. (2021). Beam-domain anti-jamming transmission for downlink massive MIMO systems: A Stackelberg game perspective. IEEE Transactions on Information Forensics and Security, 16, 2727-2742.Search in Google Scholar
Han, Y., Liu, Q., Wen, C. K., Matthaiou, M., & Ma, X. (2019). Tracking FDD massive MIMO downlink channels by exploiting delay and angular reciprocity. IEEE Journal of Selected Topics in Signal Processing, 13(5), 1062-1076.HanY.LiuQ.WenC. K.MatthaiouM.MaX. (2019). Tracking FDD massive MIMO downlink channels by exploiting delay and angular reciprocity. IEEE Journal of Selected Topics in Signal Processing, 13(5), 1062-1076.Search in Google Scholar
Tan, J., & Dai, L. (2021). Channel feedback in TDD massive MIMO systems with partial reciprocity. IEEE Transactions on Vehicular Technology, 70(12), 12960-12974.TanJ.DaiL. (2021). Channel feedback in TDD massive MIMO systems with partial reciprocity. IEEE Transactions on Vehicular Technology, 70(12), 12960-12974.Search in Google Scholar
Xie, H., Gao, F., Jin, S., Fang, J., & Liang, Y. C. (2018). Channel estimation for TDD/FDD massive MIMO systems with channel covariance computing. IEEE Transactions on Wireless Communications, 17(6), 4206-4218.XieH.GaoF.JinS.FangJ.LiangY. C. (2018). Channel estimation for TDD/FDD massive MIMO systems with channel covariance computing. IEEE Transactions on Wireless Communications, 17(6), 4206-4218.Search in Google Scholar
Sheikhi, A., Razavizadeh, S. M., & Lee, I. (2020). A comparison of TDD and FDD massive MIMO systems against smart jamming. IEEE Access, 8, 72068-72077.SheikhiA.RazavizadehS. M.LeeI. (2020). A comparison of TDD and FDD massive MIMO systems against smart jamming. IEEE Access, 8, 72068-72077.Search in Google Scholar
Chopra, R., Murthy, C. R., Suraweera, H. A., & Larsson, E. G. (2017). Performance analysis of FDD massive MIMO systems under channel aging. IEEE Transactions on Wireless Communications, 17(2), 1094-1108.ChopraR.MurthyC. R.SuraweeraH. A.LarssonE. G. (2017). Performance analysis of FDD massive MIMO systems under channel aging. IEEE Transactions on Wireless Communications, 17(2), 1094-1108.Search in Google Scholar
Alrabeiah, M., & Alkhateeb, A. (2019, November). Deep learning for TDD and FDD massive MIMO: Mapping channels in space and frequency. In 2019 53rd asilomar conference on signals, systems, and computers (pp. 1465-1470). IEEE.AlrabeiahM.AlkhateebA. (2019, November). Deep learning for TDD and FDD massive MIMO: Mapping channels in space and frequency. In 2019 53rd asilomar conference on signals, systems, and computers (pp. 1465-1470). IEEE.Search in Google Scholar
Kim, S., Choi, J. W., & Shim, B. (2020). Downlink pilot precoding and compressed channel feedback for FDD-based cell-free systems. IEEE Transactions on Wireless Communications, 19(6), 3658-3672.KimS.ChoiJ. W.ShimB. (2020). Downlink pilot precoding and compressed channel feedback for FDD-based cell-free systems. IEEE Transactions on Wireless Communications, 19(6), 3658-3672.Search in Google Scholar
Han, Y., Liu, Q., Wen, C. K., Jin, S., & Wong, K. K. (2019). FDD massive MIMO based on efficient downlink channel reconstruction. IEEE Transactions on Communications, 67(6), 4020-4034.HanY.LiuQ.WenC. K.JinS.WongK. K. (2019). FDD massive MIMO based on efficient downlink channel reconstruction. IEEE Transactions on Communications, 67(6), 4020-4034.Search in Google Scholar
Li, L., Zhu, M., Xia, S., & Chang, T. H. (2022). Downlink CSI Recovery in Massive MIMO Systems by Proactive Sensing. IEEE Wireless Communications Letters, 12(3), 406-410.LiL.ZhuM.XiaS.ChangT. H. (2022). Downlink CSI Recovery in Massive MIMO Systems by Proactive Sensing. IEEE Wireless Communications Letters, 12(3), 406-410.Search in Google Scholar
Liang, P., Fan, J., Shen, W., Qin, Z., & Li, G. Y. (2020). Deep learning and compressive sensing-based CSI feedback in FDD massive MIMO systems. IEEE Transactions on Vehicular Technology, 69(8), 9217-9222.LiangP.FanJ.ShenW.QinZ.LiG. Y. (2020). Deep learning and compressive sensing-based CSI feedback in FDD massive MIMO systems. IEEE Transactions on Vehicular Technology, 69(8), 9217-9222.Search in Google Scholar
Guo, J., Wen, C. K., Jin, S., & Li, G. Y. (2020). Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis. IEEE Transactions on Wireless Communications, 19(4), 2827-2840.GuoJ.WenC. K.JinS.LiG. Y. (2020). Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis. IEEE Transactions on Wireless Communications, 19(4), 2827-2840.Search in Google Scholar
Qing, C., Yang, Q., Cai, B., Pan, B., & Wang, J. (2019). Superimposed coding-based CSI feedback using 1-bit compressed sensing. IEEE Communications Letters, 24(1), 193-197.QingC.YangQ.CaiB.PanB.WangJ. (2019). Superimposed coding-based CSI feedback using 1-bit compressed sensing. IEEE Communications Letters, 24(1), 193-197.Search in Google Scholar
Luo, C., Ji, J., Wang, Q., Chen, X., & Li, P. (2018). Channel state information prediction for 5G wireless communications: A deep learning approach. IEEE transactions on network science and engineering, 7(1), 227-236.LuoC.JiJ.WangQ.ChenX.LiP. (2018). Channel state information prediction for 5G wireless communications: A deep learning approach. IEEE transactions on network science and engineering, 7(1), 227-236.Search in Google Scholar
Ali, M. H. E., & Taha, I. B. (2021). Channel state information estimation for 5G wireless communication systems: recurrent neural networks approach. PeerJ Computer Science, 7, e682.AliM. H. E.TahaI. B. (2021). Channel state information estimation for 5G wireless communication systems: recurrent neural networks approach. PeerJ Computer Science, 7, e682.Search in Google Scholar
Liu, L., Cai, L., Ma, L., & Qiao, G. (2021). Channel state information prediction for adaptive underwater acoustic downlink OFDMA system: Deep neural networks based approach. IEEE Transactions on Vehicular Technology, 70(9), 9063-9076.LiuL.CaiL.MaL.QiaoG. (2021). Channel state information prediction for adaptive underwater acoustic downlink OFDMA system: Deep neural networks based approach. IEEE Transactions on Vehicular Technology, 70(9), 9063-9076.Search in Google Scholar
Sakib, S., Tazrin, T., Fouda, M. M., Fadlullah, Z. M., & Nasser, N. (2020). A deep learning method for predictive channel assignment in beyond 5G networks. IEEE Network, 35(1), 266-272.SakibS.TazrinT.FoudaM. M.FadlullahZ. M.NasserN. (2020). A deep learning method for predictive channel assignment in beyond 5G networks. IEEE Network, 35(1), 266-272.Search in Google Scholar
Yang, Y., Gao, F., Li, G. Y., & Jian, M. (2019). Deep learning-based downlink channel prediction for FDD massive MIMO system. IEEE Communications Letters, 23(11), 1994-1998.YangY.GaoF.LiG. Y.JianM. (2019). Deep learning-based downlink channel prediction for FDD massive MIMO system. IEEE Communications Letters, 23(11), 1994-1998.Search in Google Scholar
Arun Kumar,Nishant Gaur & Aziz Nanthaamornphong. (2024). Signal detection of M-MIMO-orthogonal time frequency space modulation using hybrid algorithms: ZFE + MMSE and ZFE + MF. Results in Engineering103311-103311.ArunKumarNishantGaurAzizNanthaamornphong (2024). Signal detection of M-MIMO-orthogonal time frequency space modulation using hybrid algorithms: ZFE + MMSE and ZFE + MF. Results in Engineering103311-103311.Search in Google Scholar
Leontine Aarnoudse,Peter den Toom & Tom Oomen. (2025). Randomized iterative feedback tuning for fast MIMO feedback design of a mechatronic system. Control Engineering Practice106152-106152.LeontineAarnoudsePeterden ToomTomOomen (2025). Randomized iterative feedback tuning for fast MIMO feedback design of a mechatronic system. Control Engineering Practice106152-106152.Search in Google Scholar
Mykhaylo Evstigneev & Deniz Kacmazer. (2024). Fast and Accurate Numerical Integration of the Langevin Equation with Multiplicative Gaussian White Noise. Entropy(10),879-879.MykhayloEvstigneevDenizKacmazer (2024). Fast and Accurate Numerical Integration of the Langevin Equation with Multiplicative Gaussian White Noise. Entropy(10),879-879.Search in Google Scholar
Huiqin Wang,Zhen Wang,Qihan Tang,Qingbin Peng,Dan Chen,Yue Zhang & Minghua Cao. (2025). Optical orthogonal frequency division multiplexing with differential index modulation. Optics Communications131226-131226.HuiqinWangZhenWangQihanTangQingbinPengDanChenYueZhangMinghuaCao (2025). Optical orthogonal frequency division multiplexing with differential index modulation. Optics Communications131226-131226.Search in Google Scholar
Deepa R,Karthick R,Jayaraj Velusamy & Senthilkumar R. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. Computer Standards & Interfaces103934-103934.DeepaRKarthickRJayarajVelusamySenthilkumarR. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. Computer Standards & Interfaces103934-103934.Search in Google Scholar
Dimitrios Loverdos & Vasilis Sarhosis. (2024). Pixel-level block classification and crack detection from 3D reconstruction models of masonry structures using convolutional neural networks. Engineering Structures118113-.DimitriosLoverdosVasilisSarhosis (2024). Pixel-level block classification and crack detection from 3D reconstruction models of masonry structures using convolutional neural networks. Engineering Structures118113-.Search in Google Scholar