Otwarty dostęp

LOF-RF-based anomaly data detection method for power cables

, , , , ,  oraz   
22 lis 2024

Zacytuj
Pobierz okładkę

Liu, M., Fang, Y., & Sun, T., et al. (2019). Anomaly detection and analysis of state information of high voltage cable based on neighborhood preserving embedded and principal component analysis. Science Technology and Engineering, 19, 192-199 (in Chinese). Search in Google Scholar

Yan, Y., Cheng, G., & Chen, Y., et al. (2015). A method for anomaly detection of state information of power equipment based on big data analysis. Proceedings of the CSEE, 35, 52-59 (in Chinese). Search in Google Scholar

Cai, Z. (2023). Research on mine cable insulation temperature monitoring system based on machine learning. Liaoning Technical University. Search in Google Scholar

Wild, M., Tenbohlen, S., Gulski, E., & Jongen, R. (2017). Basic aspects of partial discharge on-site testing of long length transmission power cables. IEEE Transactions on Dielectrics and Electrical Insulation, 24(2), 1077-1087. Search in Google Scholar

Florkowski, M. (2021). Anomaly detection, trend evolution, and feature extraction in partial discharge patterns. Energies, 14(13), 3886. Search in Google Scholar

Guan, J., Zheng, C., & Jian, G., et al. (2024). LSTM abnormal cable temperature prediction algorithm based on SVM with particle swarm optimization. Industrial Control Computer, 37, 55-56+102. Search in Google Scholar

Ma, C. (2024). Design of high voltage transmission cable joint temperature abnormal warning system based on LSTM. Electronic Design Engineering, 32, 78-82. Search in Google Scholar

Xu, X., Xu, B., & Peng, Q. (2023). Monitoring temperature anomaly of submarine cable based on joint analysis of time-space domain. Ship Engineering, 45, 67-70 (in Chinese). Search in Google Scholar

Yazdani-Asrami, M., Seyyedbarzegar, S., Sadeghi, A., de Sousa, W. T., & Kottonau, D. (2022). High temperature superconducting cables and their performance against short circuit faults: Current development, challenges, solutions, and future trends. Superconductor Science and Technology, 35(8), 083002. Search in Google Scholar

Arora, R., & Mosch, W. (2022). High voltage and electrical insulation engineering. John Wiley & Sons. Search in Google Scholar

Enescu, D., Colella, P., & Russo, A. (2020). Thermal assessment of power cables and impacts on cable current rating: An overview. Energies, 13(20), 5319. Search in Google Scholar

Che, S., An, B., & Chen, Y. (2022). Submarine cable temperature anomalies detection based on difference analysis and local outlier factors. World Scientific Research Journal, 8(7), 381-388. Search in Google Scholar

Lee, N., Nam, J., & Choi, H. J. (2020, November). Anomaly detection and visualization for electricity consumption data. In 2020 International Conference on Data Mining Workshops (ICDMW) (pp. 743-749). IEEE. Search in Google Scholar

Jeong, W., Tsingas, C., & Almubarak, M. S. (2020). Local outlier factor as part of a workflow for detecting and attenuating blending noise in simultaneously acquired data. Geophysical Prospecting, 68(5), 1523-1539. Search in Google Scholar

Alsini, R., Alghushairy, O., & Ma, X., et al. (2021). A grid partition-based local outlier factor for data stream processing. In Advances in Artificial Intelligence and Applied Cognitive Computing: Proceedings from ICAI20 and ACC20 (pp. 1047-1060). Springer International Publishing. Search in Google Scholar

Shriram, S., & Sivasankar, E. (2019, December). Anomaly detection on shuttle data using unsupervised learning techniques. In 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) (pp. 221-225). IEEE. Search in Google Scholar

Liu, H., & Li, L. (2023). Anomaly detection of high-frequency sensing data in transportation infrastructure monitoring system based on fine-tuned model. IEEE Sensors Journal, 23(8), 8630-8638. Search in Google Scholar

Sagrillo, M., Guerra, R. R., Machado, R., & Bayer, F. M. (2023). A generalized control chart for anomaly detection in SAR imagery. Computers & Industrial Engineering, 177, 109030. Search in Google Scholar

Kim, S., Cho, N. W., & Kang, S. H. (2010). Density-based outlier detection for very large data. Journal of the Korean Operations Research and Management Science Society, 35(2), 71-88. Search in Google Scholar

Wang, J., Li, X., Li, J., Sun, Q., & Wang, H. (2022). NGCU: A new RNN model for time-series data prediction. Big Data Research, 27, 100296. Search in Google Scholar

Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences (pp. 986-996). Springer Berlin Heidelberg. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne