Otwarty dostęp

Research on Artificial Intelligence-Assisted Software Test Automation Methods

  
09 paź 2024

Zacytuj
Pobierz okładkę

Ralph, P. (2018). The two paradigms of software development research. Science of Computer Programming, 156, 68-89. Search in Google Scholar

Alahyari, H., Svensson, R. B., & Gorschek, T. (2017). A study of value in agile software development organizations. Journal of Systems and Software, 125, 271-288. Search in Google Scholar

Albusays, K., Bjorn, P., Dabbish, L., Ford, D., Murphy-Hill, E., Serebrenik, A., & Storey, M. A. (2021). The diversity crisis in software development. IEEE Software, 38(2), 19-25. Search in Google Scholar

Rokis, K., & Kirikova, M. (2022, September). Challenges of low-code/no-code software development: A literature review. In International Conference on Business Informatics Research (pp. 3-17). Cham: Springer International Publishing. Search in Google Scholar

Georgiou, S., Rizou, S., & Spinellis, D. (2019). Software development lifecycle for energy efficiency: techniques and tools. ACM Computing Surveys (CSUR), 52(4), 1-33. Search in Google Scholar

Joshi, P. (2017). Artificial intelligence with python. Packt Publishing Ltd. Search in Google Scholar

Goralski, M. A., & Tan, T. K. (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. Search in Google Scholar

Ertel, W. (2018). Introduction to artificial intelligence. Springer. Search in Google Scholar

Tatineni, S., & Chinamanagonda, S. (2021). Leveraging Artificial Intelligence for Predictive Analytics in DevOps: Enhancing Continuous Integration and Continuous Deployment Pipelines for Optimal Performance. Journal of Artificial Intelligence Research and Applications, 1(1), 103-138. Search in Google Scholar

Oliinyk, B., & Oleksiuk, V. (2019, November). Automation in software testing, can we automate anything we want?. In CS&SE@ SW (pp. 224-234). Search in Google Scholar

Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T. F., & Klein, J. (2018). Automated testing of android apps: A systematic literature review. IEEE Transactions on Reliability, 68(1), 45-66. Search in Google Scholar

Hutchison, C., Zizyte, M., Lanigan, P. E., Guttendorf, D., Wagner, M., Le Goues, C., & Koopman, P. (2018, May). Robustness testing of autonomy software. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice (pp. 276-285). Search in Google Scholar

Galhotra, S., Brun, Y., & Meliou, A. (2017, August). Fairness testing: testing software for discrimination. In Proceedings of the 2017 11th Joint meeting on foundations of software engineering (pp. 498-510). Search in Google Scholar

Hutchinson, B., Smart, A., Hanna, A., Denton, E., Greer, C., Kjartansson, O., ... & Mitchell, M. (2021, March). Towards accountability for machine learning datasets: Practices from software engineering and infrastructure. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 560-575). Search in Google Scholar

Shah, V. (2019). Towards Efficient Software Engineering in the Era of AI and ML: Best Practices and Challenges. International Journal of Computer Science and Technology, 3(3), 63-78. Search in Google Scholar

Gerke, S., Babic, B., Evgeniou, T., & Cohen, I. G. (2020). The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. NPJ digital medicine, 3(1), 53. Search in Google Scholar

Nass, M., Alégroth, E., & Feldt, R. (2021). Why many challenges with GUI test automation (will) remain. Information and Software Technology, 138, 106625. Search in Google Scholar

Esnaashari, M., & Damia, A. H. (2021). Automation of software test data generation using genetic algorithm and reinforcement learning. Expert Systems with Applications, 183, 115446. Search in Google Scholar

Yatskiv, S., Voytyuk, I., Yatskiv, N., Kushnir, O., Trufanova, Y., & Panasyuk, V. (2019, June). Improved method of software automation testing based on the robotic process automation technology. In 2019 9th international conference on advanced computer information technologies (ACIT) (pp. 293-296). IEEE. Search in Google Scholar

Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., & Tumeng, R. (2018). Test case prioritization approaches in regression testing: A systematic literature review. Information and Software Technology, 93, 74-93. Search in Google Scholar

Battina, D. S. (2019). Artificial intelligence in software test automation: A systematic literature review. International Journal of Emerging Technologies and Innovative Research (www.jetir.Org UGC and issn Approved), ISSN, 2349-5162. Search in Google Scholar

Takanen, A., Demott, J. D., Miller, C., & Kettunen, A. (2018). Fuzzing for software security testing and quality assurance. Artech House. Search in Google Scholar

Chen, T. Y., Kuo, F. C., Liu, H., Poon, P. L., Towey, D., Tse, T. H., & Zhou, Z. Q. (2018). Metamorphic testing: A review of challenges and opportunities. ACM Computing Surveys (CSUR), 51(1), 1-27. Search in Google Scholar

Wiklund, K., Eldh, S., Sundmark, D., & Lundqvist, K. (2017). Impediments for software test automation: A systematic literature review. Software Testing, Verification and Reliability, 27(8), e1639. Search in Google Scholar

Sneha, K., & Malle, G. M. (2017, August). Research on software testing techniques and software automation testing tools. In 2017 international conference on energy, communication, data analytics and soft computing (ICECDS) (pp. 77-81). IEEE. Search in Google Scholar

Umar, M. A., & Zhanfang, C. (2019). A study of automated software testing: Automation tools and frameworks. International Journal of Computer Science Engineering (IJCSE), 6(217-225), 47-48. Search in Google Scholar

Eckhart, M., Meixner, K., Winkler, D., & Ekelhart, A. (2019). Securing the testing process for industrial automation software. Computers & Security, 85, 156-180. Search in Google Scholar

Sanuja D. Mohanty, Ram N. Patro, Pradyut K. Biswal, Biswajit Pradhan & Sk Sazim. (2024). Trade-off between bagging and boosting for quantum separability-entanglement classification. Quantum Information Processing(7),273-273. Search in Google Scholar

Zhongtao Wang, Shuguo Liu, Xinrui Zhang, Bing Zhang, Kaiyuan Zhao, Zhiwei Li... & Shengbin Wei. (2024). Research on the application of Bagging W-KNN algorithm in alloy steel identification with PXRF analyzer. Materials Today Communications109600-109600. Search in Google Scholar

Hayato Nishimori & Taiji Suzuki. (2024). Feature learning and generalization error analysis of two-layer linear neural networks for high-dimensional inputs. Information Geometry(prepubulish),1-43. Search in Google Scholar

Meejoung Kim & Jun Heo. (2024). Study on applicable coverage extension of theory-based generalization errors bounds to the variants of RVFL network and ELM. Neurocomputing127875-127875. Search in Google Scholar

Zheng Suqing, Wang Lei, Xiong Jun, Liang Guang, Xu Yong & Lin Fu. (2022). Consensus Prediction of Human Gut Microbiota-Mediated Metabolism Susceptibility for Small Molecules by Machine Learning, Structural Alerts, and Dietary Compounds-Based Average Similarity Methods.. Journal of chemical information and modeling(4). Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne