Otwarty dostęp

Research on real-time scheduling optimization technology of power system based on deep learning

, ,  oraz   
04 paź 2024

Zacytuj
Pobierz okładkę

Wen, G., Yu, X., & Liu, Z. (2021). Recent progress on the study of distributed economic dispatch in smart grid: an overview. Frontiers of Information Technology & Electronic Engineering, 22(1), 25-39. Search in Google Scholar

Dubey, H. M., Pandit, M., & Panigrahi, B. K. (2018). An overview and comparative analysis of recent bio-inspired optimization techniques for wind integrated multi-objective power dispatch. Swarm and Evolutionary Computation, 38, 12-34. Search in Google Scholar

Momoh, J. A. (2017). Electric power system applications of optimization. CRC press. Search in Google Scholar

Sauer, P. W., Pai, M. A., & Chow, J. H. (2017). Power system dynamics and stability: with synchrophasor measurement and power system toolbox. John Wiley & Sons. Search in Google Scholar

Mohandes, B., El Moursi, M. S., Hatziargyriou, N., & El Khatib, S. (2019). A review of power system flexibility with high penetration of renewables. IEEE Transactions on Power Systems, 34(4), 3140-3155. Search in Google Scholar

Superchi, F., Giovannini, N., Moustakis, A., Pechlivanoglou, G., & Bianchini, A. (2024). Optimization of the power output scheduling of a renewables-based hybrid power station using MILP approach: The case of Tilos island. Renewable Energy, 220, 119685. Search in Google Scholar

Han, S., He, M., Zhao, Z., Chen, D., Xu, B., Jurasz, J., ... & Zheng, H. (2023). Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility. Applied Energy, 333, 120555. Search in Google Scholar

Kumar, K. P., & Saravanan, B. (2017). Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids–A review. Renewable and Sustainable Energy Reviews, 71, 348-358. Search in Google Scholar

Ranjan, M., & Shankar, R. (2022). A literature survey on load frequency control considering renewable energy integration in power system: Recent trends and future prospects. Journal of Energy Storage, 45, 103717. Search in Google Scholar

Qiu, H., Gu, W., Liu, P., Sun, Q., Wu, Z., & Lu, X. (2022). Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective. Energy, 251, 123942. Search in Google Scholar

Makhadmeh, S. N., Al-Betar, M. A., Assaleh, K., & Kassaymeh, S. (2022). A hybrid white shark equilibrium optimizer for power scheduling problem based IoT. IEEE Access, 10, 132212-132231. Search in Google Scholar

Ratnam, K. S., Palanisamy, K., & Yang, G. (2020). Future low-inertia power systems: Requirements, issues, and solutions-A review. Renewable and Sustainable Energy Reviews, 124, 109773. Search in Google Scholar

Jordehi, A. R. (2019). Optimisation of demand response in electric power systems, a review. Renewable and sustainable energy reviews, 103, 308-319. Search in Google Scholar

Ibrahim, M. S., Dong, W., & Yang, Q. (2020). Machine learning driven smart electric power systems: Current trends and new perspectives. Applied Energy, 272, 115237. Search in Google Scholar

Ji, X., Yin, Z., Zhang, Y., & Xu, B. (2021). Real-time autonomous dynamic reconfiguration based on deep learning algorithm for distribution network. Electric Power Systems Research, 195, 107132. Search in Google Scholar

Dabbaghjamanesh, M., & Zhang, J. (2020, February). Deep learning-based real-time switching of reconfigurable microgrids. In 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (pp. 1-5). IEEE. Search in Google Scholar

Khodayar, M., Liu, G., Wang, J., & Khodayar, M. E. (2020). Deep learning in power systems research: A review. CSEE Journal of Power and Energy Systems, 7(2), 209-220. Search in Google Scholar

Reddy, S. S. (2017). Optimal scheduling of thermal-wind-solar power system with storage. Renewable energy, 101, 1357-1368. Search in Google Scholar

Liu, C., Zhang, H., Shahidehpour, M., Zhou, Q., & Ding, T. (2021). A two-layer model for microgrid real-time scheduling using approximate future cost function. IEEE Transactions on Power Systems, 37(2), 1264-1273. Search in Google Scholar

Khatami, R., Heidarifar, M., Parvania, M., & Khargonekar, P. (2018). Scheduling and pricing of load flexibility in power systems. IEEE Journal of Selected Topics in Signal Processing, 12(4), 645-656. Search in Google Scholar

Hou, J., Yu, W., Xu, Z., Ge, Q., Li, Z., & Meng, Y. (2023). Multi-time scale optimization scheduling of microgrid considering source and load uncertainty. Electric Power Systems Research, 216, 109037. Search in Google Scholar

Akhtar, S., Adeel, M., Iqbal, M., Namoun, A., Tufail, A., & Kim, K. H. (2023). Deep learning methods utilization in electric power systems. Energy Reports, 10, 2138-2151. Search in Google Scholar

Dabbaghjamanesh, M., Moeini, A., Hatziargyriou, N. D., & Zhang, J. (2020). Deep learning-based real-time switching of hybrid AC/DC transmission networks. IEEE Transactions on Smart Grid, 12(3), 2331-2342. Search in Google Scholar

Yang, C., Zhang, J., Jiang, W., Wang, L., Zhang, H., Yi, Z., & Lin, F. (2023). Reinforcement learning and stochastic optimization with deep learning-based forecasting on power grid scheduling. Processes, 11(11), 3188. Search in Google Scholar

Liu, S., Liu, J., Yang, N., Huang, Y., Jiang, Q., & Gao, Y. (2024). Real-time power scheduling through reinforcement learning from demonstrations. Electric Power Systems Research, 235, 110638. Search in Google Scholar

Benmansour Rachid & Braun Oliver. (2022). On the minimum number of resources for a perfect schedule. Central European Journal of Operations Research(1),191-204. Search in Google Scholar

Dusmurod Kilichev, Dilmurod Turimov & Wooseong Kim. (2024). Next–Generation Intrusion Detection for IoT EVCS: Integrating CNN, LSTM, and GRU Models. Mathematics(4). Search in Google Scholar

Mahesh Nadda, Kushagra Singh, Sangram Roy & Ashutosh Yadav. (2024). A comparative assessment of CFD based LSTM and GRU for hydrodynamic predictions of gas-solid fluidized bed. Powder Technology119836-. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne