This work is licensed under the Creative Commons Attribution 4.0 International License.
Abd El-Rehim, A. F., Zahran, H. Y., Habashy, D. M., & Al-Masoud, H. M. (2020). Simulation and prediction of the Vickers hardness of AZ91 magnesium alloy using artificial neural network model. Crystals, 10(4), 290.Search in Google Scholar
Vo, H. T., Pinney, P., Schneider, M. M., Kumar, M. A., McCabe, R. J., Tomé, C. N., & Capolungo, L. (2023). Automated characterization and classification of 3D microstructures: an application to 3D deformation twin networks in titanium. Materials Today Advances, 20, 100425.Search in Google Scholar
Klein, T., Arnoldt, A., Schnall, M., & Gneiger, S. (2021). Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy. Jom, 73, 1126-1134.Search in Google Scholar
He, M., Chen, L., Yin, M., Xu, S., & Liang, Z. (2023). Review on magnesium and magnesium-based alloys as biomaterials for bone immobilization. Journal of Materials Research and Technology, 23, 4396-4419.Search in Google Scholar
Soyarslan, C., Bargmann, S., Pradas, M., & Weissmüller, J. (2018). 3D stochastic bicontinuous microstructures: Generation, topology and elasticity. Acta materialia, 149, 326-340.Search in Google Scholar
Basu, I., & Al-Samman, T. (2019). Hierarchical twinning induced texture weakening in lean magnesium alloys. Frontiers in Materials, 6, 187.Search in Google Scholar
Ahmadi, S. M., Hedayati, R., Jain, R. A. K., Li, Y., Leeflang, S., & Zadpoor, A. A. (2017). Effects of laser processing parameters on the mechanical properties, topology, and microstructure of additively manufactured porous metallic biomaterials: A vector-based approach. Materials & Design, 134, 234-243.Search in Google Scholar
Yue, X., Shang, J., Zhang, M., Hur, B., & Ma, X. (2022). Additive manufacturing of high porosity magnesium scaffolds with lattice structure and random structure. Materials Science and Engineering: A, 859, 144167.Search in Google Scholar
Banait, S., Liu, C., Campos, M., Pham, M. S., & Pérez-Prado, M. T. (2022). Coupled effect of microstructure and topology on the mechanical behavior of Inconel718 additively manufactured lattices. Materials & Design, 224, 111294.Search in Google Scholar
Zhang, J., Miao, J., Balasubramani, N., Cho, D. H., Avey, T., Chang, C. Y., & Luo, A. A. (2023). Magnesium research and applications: Past, present and future. Journal of Magnesium and Alloys.Search in Google Scholar
Zeng, Z., Salehi, M., Kopp, A., Xu, S., Esmaily, M., & Birbilis, N. (2022). Recent progress and perspectives in additive manufacturing of magnesium alloys. Journal of Magnesium and Alloys, 10(6), 1511-1541.Search in Google Scholar
Ahmadi, M., Tabary, S. B., Rahmatabadi, D., Ebrahimi, M. S., Abrinia, K., & Hashemi, R. (2022). Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. journal of materials research and technology, 19, 1537-1562.Search in Google Scholar
Wang, T., Zha, M., Du, C., Jia, H. L., Wang, C., Guan, K., ... & Wang, H. Y. (2023). High strength and high ductility achieved in a heterogeneous lamella-structured magnesium alloy. Materials Research Letters, 11(3), 187-195.Search in Google Scholar
Xie, H., Pan, H., Ren, Y., Sun, S., Wang, L., Zhao, H., ... & Qin, G. (2018). Magnesium alloys strengthened by nanosaucer precipitates with confined new topologically close-packed structure. Crystal Growth & Design, 18(10), 5866-5873.Search in Google Scholar
Wang, L., Fang, G., & Qian, L. (2018). Modeling of dynamic recrystallization of magnesium alloy using cellular automata considering initial topology of grains. Materials Science and Engineering: A, 711, 268-283.Search in Google Scholar
Jin, Z. Z., Zha, M., Wang, S. Q., Wang, S. C., Wang, C., Jia, H. L., & Wang, H. Y. (2022). Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility. Journal of Magnesium and Alloys, 10(5), 1191-1206.Search in Google Scholar
Mahjoub, R., Ferry, M., & Stanford, N. (2019). Local topology and its effects on grain boundary and solute segregation in HCP magnesium. Materialia, 6, 100258.Search in Google Scholar
Makarakreasey King,Sang Inn Woo & Chan Young Yune.(2024).Utilizing a CNN-RNN machine learning approach for forecasting time-series outlet fluid temperature monitoring by long-term operation of BHEs system.Geothermics103082-103082Search in Google Scholar
Akagi Kazuto,Naito Hisashi,Saikawa Takafumi,Kotani Motoko & Yoshikawa Hirofumi.(2024).Linear regression model for metal–organic frameworks with CO2 adsorption based on topological data analysis.Scientific Reports(1),12021-12021.Search in Google Scholar
Tsiotas Dimitrios,Magafas Lykourgos & P. Hanias Michael.(2020).Examination of Chaotic Structures in Semiconductor or Alloy Voltage Time-Series: A Complex Network Approach for the Case of TlInTesub2/sub.Physics(4),624-639.Search in Google Scholar
Sergey Konovalov,Suresh Gudala,Irina Panchenko,Kirill Osintsev & Xizhang Chen.(2024).Evolution of microstructure, mechanical properties and phase stability of CoCrFeMnNi high entropy alloys. Vacuum113405-113405.Search in Google Scholar
Roaa Sait,Sridhar Govindarajan,Deema Hussein,Alazouf Alhowity,Saleh Baeesa,Mohammed Bangash... & Richard Cross.(2024).A comparative study of electrochemical stability and biocompatibility of TiN nanowires and thin films for neural-electrode application.Electrochimica Acta144527-144527.Search in Google Scholar