Otwarty dostęp

Application of Decision Tree and Machine Learning in New Energy Vehicle Maintenance Decision Making


Zacytuj

Gong, C. S. A., Su, C. H. S., & Tseng, K. H. (2020). Implementation of machine learning for fault classification on vehicle power transmission system. IEEE Sensors Journal, PP(99), 1-1. Search in Google Scholar

Li, L. L., Liu, J. Q., Tseng, M. L., Zhang, X. B., & Wu, K. J. (2022). Predicting the power module cumulative damage degree in new energy vehicle: improved manson model. Journal of cleaner production. Search in Google Scholar

Yang, D., Zhu, L., Liu, Y., Wu, D., & Ran, B. (2019). A novel car-following control model combining machine learning and kinematics models for automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(6), 1991-2000. Search in Google Scholar

Sime, M., Bailey, G., Hajj, E. Y., & Chkaiban, R. (2020). Road load based model for vehicle repair and maintenance cost estimation:. Transportation Research Record, 2674(11), 490-497. Search in Google Scholar

Shafi, U., Safi, A., Shahid, A. R., Ziauddin, S., & Saleem, M. Q. (2018). Vehicle remote health monitoring and prognostic maintenance system. Journal of advanced transportation, 2018(PT.1), 1-10. Search in Google Scholar

Fu, J., Wen, G., Yu, X., & Wu, Z. G. (2020). Distributed formation navigation of constrained second-order multiagent systems with collision avoidance and connectivity maintenance. IEEE Transactions on Cybernetics, PP(99), 1-14. Search in Google Scholar

Carloni, A., Baronti, F., Rienzo, R. D., Roncella, R., & Saletti, R. (2021). An open-hardware and low-cost maintenance tool for light-electric-vehicle batteries. Energies, 14. Search in Google Scholar

Chaolin, Y., Liang, R., & Hongnan, L. (2017). Structural health monitoring for a z-type special vehicle. Sensors (Basel, Switzerland), 17(6). Search in Google Scholar

Jain, M., Vasdev, D., Pal, K., & Sharma, V. (2022). Systematic literature review on predictive maintenance of vehicles and diagnosis of vehicle’s health using machine learning techniques. Computational Intelligence, 38, 1990 - 2008. Search in Google Scholar

Song, W., Lei, Z., Le, Q., Li, F., & Wu, J. (2021). Maintenance personnel optimization model of vehicle equipment based on support task. Mathematical Problems in Engineering, 2021(4), 1-13. Search in Google Scholar

Kamlu, S., & Laxmi, V. (2019). Condition-based maintenance strategy for vehicles using hidden markov models. Advances in Mechanical Engineering, 11(1), 168781401880638. Search in Google Scholar

Tao, X., Mrtensson, J., Warnquist, H., & Pernestl, A. (2022). Short-term maintenance planning of autonomous trucks for minimizing economic risk. Reliability Engineering & System Safety, 220, 108251-. Search in Google Scholar

Zou, W. Q., Pan, Q. K., Meng, L. L., Sang, H. Y., Han, Y. Y., & Li, J. Q. (2023). An effective self-adaptive iterated greedy algorithm for a multi-agvs scheduling problem with charging and maintenance. Expert Systems with Applications, 216, 119512-. Search in Google Scholar

Camden, M., Hickman, J., & Hanowski, R. (2017). Pilot testing a naturalistic driving study to investigate winter maintenance operator fatigue during winter emergencies. Safety, 3(3), 19-. Search in Google Scholar

Zvolensk, P., Barta, D., Juraj Greník, Drodziel, P., & ubomír Kaiar. (2021). Improved method of processing the output parameters of the diesel locomotive engine for more efficient maintenance. Eksploatacja i Niezawodnosc - Maintenance and Reliability(2). Search in Google Scholar

eISSN:
2444-8656
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics