Otwarty dostęp

Intelligent Decision Algorithm for Photovoltaic Power Generation Control Based on Feature Neural Computing Modeling

  
05 maj 2024

Zacytuj
Pobierz okładkę

Alrifaey, M., Lim, W. H., Ang, C. K., et al. (2022). Hybrid deep learning model for fault detection and classification of grid-connected photovoltaic system. *IEEE Access, 10*, 13852-13869. Search in Google Scholar

Gaviria, J. F., Narváez, G., Guillen, C., et al. (2022). Machine learning in photovoltaic systems: A review. *Renewable Energy, 196*, 298-318. Search in Google Scholar

Akhter, M. N., Mekhilef, S., Mokhlis, H., et al. (2022). A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems. *Applied Energy, 307*, 118185. Search in Google Scholar

Pei, J., Li, S., Yu, Z., et al. (2023). Federated learning encounters 6g wireless communication in the scenario of internet of things. *IEEE Communications Standards Magazine, 7*(1), 94-100. Search in Google Scholar

Mellit, A., & Kalogirou, S. (2022). Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems. *Renewable Energy, 184*, 1074-1090. Search in Google Scholar

Abualigah, L., Zitar, R. A., Almotairi, K. H., et al. (2022). Wind, solar, and photovoltaic renewable energy systems with and without energy storage optimization: A survey of advanced machine learning and deep learning techniques. *Energies, 15*(2), 578. Search in Google Scholar

Pei, J., Liu, W., Li, J., Wang, L., & Liu, C. (2024). A Review of Federated Learning Methods in Heterogeneous scenarios. *IEEE Transactions on Consumer Electronics.* Search in Google Scholar

Van Gompel, J., Spina, D., & Develder, C. (2022). Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks. *Applied Energy, 305*, 117874. Search in Google Scholar

Eskandari, A., Aghaei, M., Milimonfared, J., et al. (2023). A weighted ensemble learning-based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm. *International Journal of Electrical Power & Energy Systems, 144*, 108591. Search in Google Scholar

Agga, A., Abbou, A., Labbadi, M., et al. (2022). CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. *Electric Power Systems Research, 208*, 107908. Search in Google Scholar

Mansouri, M., Trabelsi, M., Nounou, H., et al. (2021). Deep learning-based fault diagnosis of photovoltaic systems: A comprehensive review and enhancement prospects. *IEEE Access, 9*, 126286-126306. Search in Google Scholar

Rasoulian, A., Saghafi, H., Abbasian, M., et al. (2023). Deep learning based model predictive control of active filter inverter as interface for photovoltaic generation. *IET Renewable Power Generation, 17*(13), 3151-3162. Search in Google Scholar

Hammoudi, Y., Idrissi, I., Boukabous, M., et al. (2022). Review on maintenance of photovoltaic systems based on deep learning and internet of things. *Indonesian Journal of Electrical Engineering and Computer Science, 26*(2), 1060-1072. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne