Otwarty dostęp

A Study on Improving Tactical Strategies in Sports Games Using Optimization Algorithms

  
10 kwi 2024

Zacytuj
Pobierz okładkę

Chen, X., Jiang, J. Y., Jin, K., Zhou, Y., Liu, M., Brantingham, P. J., & Wang, W. (2022, October). ReLiable: Offline Reinforcement Learning for Tactical Strategies in Professional Basketball Games. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 3023-3032). Search in Google Scholar

Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro, A. J., Molina, D., LaTorre, A., Suganthan, P. N., Coello, C. A. C., & Herrera, F. (2021). A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm and Evolutionary Computation, 64, 100888. Search in Google Scholar

McCullough, B. P., Orr, M., & Kellison, T. (2020). Sport ecology: Conceptualizing an emerging subdiscipline within sport management. Journal of Sport Management, 34(6), 509-520. Search in Google Scholar

Goud, P. S. H. V., Roopa, Y. M., & Padmaja, B. (2019, March). Player performance analysis in sports: with fusion of machine learning and wearable technology. In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) (pp. 600-603). IEEE. Search in Google Scholar

Beal, R., Chalkiadakis, G., Norman, T. J., & Ramchurn, S. D. (2020). Optimising game tactics for football. arXiv preprint arXiv:2003.10294. Search in Google Scholar

Gouveia, É. R., Gouveia, B. R., Marques, A., Kliegel, M., Rodrigues, A. J., Prudente, J., Lopes, H., & Ihle, A. (2019). The effectiveness of a tactical games approach in the teaching of invasion games. Journal of Physical Education and Sport, 19, 962-970. Search in Google Scholar

Suzuki, G., Takahashi, S., Ogawa, T., & Haseyama, M. (2019). Team tactics estimation in soccer videos based on a deep extreme learning machine and characteristics of the tactics. Ieee Access, 7, 153238-153248. Search in Google Scholar

Chmait, N., & Westerbeek, H. (2021). Artificial intelligence and machine learning in sport research: An introduction for non-data scientists. Frontiers in Sports and Active Living, 3, 363. Search in Google Scholar

Godbout, P., & Gréhaigne, J. F. (2022). Regulation of tactical learning in team sports–The case of the tactical-decision learning model. Physical Education and Sport Pedagogy, 27(3), 215-230. Search in Google Scholar

Huang, Y. C., Liao, I. N., Chen, C. H., İk, T. U., & Peng, W. C. (2019, September). Tracknet: A deep learning network for tracking high-speed and tiny objects in sports applications. In 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1-8). IEEE. Search in Google Scholar

Rahimian, P., Oroojlooy, A., & Toka, L. (2021, October). Towards optimized actions in critical situations of soccer games with deep reinforcement learning. In 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 1-12). IEEE. Search in Google Scholar

Wang, Z., Long, C., Cong, G., & Ju, C. (2019, July). Effective and efficient sports play retrieval with deep representation learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 499-509). Search in Google Scholar

Yiğit, A. T., Samak, B., & Kaya, T. (2020). Football player value assessment using machine learning techniques. In Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making: Proceedings of the INFUS 2019 Conference, Istanbul, Turkey, July 23-25, 2019 (pp. 289-297). Springer International Publishing. Search in Google Scholar

Nadikattu, R. R. (2020). Implementation of new ways of artificial intelligence in sports. Journal of Xidian University, 14(5), 5983-5997. Search in Google Scholar

Liu, Z. (2020, February). Application of artificial intelligence technology in basketball games. In IOP Conference Series: Materials Science and Engineering (Vol. 750, No. 1, p. 012093). IOP Publishing. Search in Google Scholar

Ma, H., & Pang, X. (2019). Research and analysis of sport medical data processing algorithms based on deep learning and Internet of Things. IEEE Access, 7, 118839-118849. Search in Google Scholar

Yeh, R. A., Schwing, A. G., Huang, J., & Murphy, K. (2019). Diverse generation for multi-agent sports games. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4610-4619). Search in Google Scholar

Tian, C., De Silva, V., Caine, M., & Swanson, S. (2019). Use of machine learning to automate the identification of basketball strategies using whole team player tracking data. Applied Sciences, 10(1), 24. Search in Google Scholar

Song, H., Montenegro-Marin, C. E., & Krishnamoorthy, S. (2021). Secure prediction and assessment of sports injuries using deep learning based convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 12, 3399-3410. Search in Google Scholar

Liu, H., Hou, W., Emolyn, I., & Liu, Y. (2023). Building a prediction model of college students’ sports behavior based on machine learning method: combining the characteristics of sports learning interest and sports autonomy. Scientific Reports, 13(1), 15628. Search in Google Scholar

Lu, C. J., Lee, T. S., Wang, C. C., & Chen, W. J. (2021). Improving sports outcome prediction process using integrating adaptive weighted features and machine learning techniques. Processes, 9(9), 1563. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne