Otwarty dostęp

Alpha adrenergic receptors in clinical practice – Present and future


Zacytuj

1. Rizalar FS, Roosen DA, Haucke V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation. Neuron. 2021;109(1):27-41. doi:10.1016/j.neuron.2020.09.03833098763 Open DOISearch in Google Scholar

2. Perez DM. α1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Frontiers in Pharmacology. 2020;11. https://www.frontiersin.org/articles/10.3389/fphar.2020.58109810.3389/fphar.2020.581098755305133117176 Search in Google Scholar

3. Szabadi E. Introduction to Neuropsychopharmacology. Br J Clin Pharmacol. 2009;68(6):965. doi:10.1111/j.1365-2125.2009.03529.x Open DOISearch in Google Scholar

4. Nguyen PV, Connor SA. Noradrenergic Regulation of Hippocampus-Dependent Memory. Cent Nerv Syst Agents Med Chem. 2019;19(3):187-196. doi:10.2174/187152491966619071916363231749419 Open DOISearch in Google Scholar

5. Ordway GA, Schwartz MA, Frazer A. Brain Norepinephrine: Neurobiology and Therapeutics. Cambridge University Press; 2007.10.1017/CBO9780511544156 Search in Google Scholar

6. Langer SZ. α2-Adrenoceptors in the treatment of major neuropsychiatric disorders. Trends Pharmacol Sci. 2015;36(4):196-202. doi:10.1016/j.tips.2015.02.00625771972 Open DOISearch in Google Scholar

7. Kobayashi M, Sasabe T, Shiohama Y, Koshikawa N. Activation of alpha1-adrenoceptors increases firing frequency through protein kinase C in pyramidal neurons of rat visual cortex. Neurosci Lett. 2008;430(2):175-180. doi:10.1016/j.neulet.2007.10.04718061348 Open DOISearch in Google Scholar

8. Velásquez-Martinez MC, Vázquez-Torres R, Jiménez-Rivera CA. Activation of alpha1-adrenoceptors enhances glutamate release onto ventral tegmental area dopamine cells. Neuroscience. 2012;216:18-30. doi:10.1016/j.neuroscience.2012.03.056380908022542873 Open DOISearch in Google Scholar

9. Salgado H, Garcia-Oscos F, Patel A, et al. Layer-specific noradrenergic modulation of inhibition in cortical layer II/III. Cereb Cortex. 2011;21(1):212-221. doi:10.1093/cercor/bhq081300057120466749 Open DOISearch in Google Scholar

10. Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci. 2014;182:15-41. doi:10.1016/j.autneu.2014.01.00624685093 Open DOISearch in Google Scholar

11. RxList - The Internet Drug Index for prescription drug information, interactions, and side effects. RxList. Accessed October 7, 2022. https://www.rxlist.com/ Search in Google Scholar

12. Alpha 1 Adrenergic Receptor Antagonists. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases; 2012. http://www.ncbi.nlm.nih.gov/books/NBK548719/ Search in Google Scholar

13. Datta D, Yang ST, Galvin VC, et al. Noradrenergic α1-Adrenoceptor Actions in the Primate Dorsolateral Prefrontal Cortex. J Neurosci. 2019;39(14):2722-2734. doi:10.1523/JNEUROSCI.2472-18.2019644599330755491 Open DOISearch in Google Scholar

14. Feighner JP. Mechanism of action of antidepressant medications. J Clin Psychiatry. 1999;60 Suppl 4:4-11; discussion 12-13.10.4088/JCP.v60n1204 Search in Google Scholar

15. Kovich H, DeJong A. Common Questions About the Pharmacologic Management of Depression in Adults. Am Fam Physician. 2015;92(2):94-100. Search in Google Scholar

16. Born GVR, Banks P. Hugh Blaschko, 4 January 1900 - 18 April 1993. Biographical Memoirs of Fellows of the Royal Society. 1996;42:40-60. doi:10.1098/rsbm.1996.0004 Open DOISearch in Google Scholar

17. Rubin RP. Hermann (Hugh) Blaschko (1900-1993): His fundamental contributions to biochemical pharmacology and clinical medicine. J Med Biogr. 2019;27(3):179-183. doi:10.1177/096777201770309130848165 Open DOISearch in Google Scholar

18. Taylor BN, Cassagnol M. Alpha Adrenergic Receptors. StatPearls Publishing; 2022. https://www.ncbi.nlm.nih.gov/books/NBK539830/ Search in Google Scholar

19. Haj-Dahmane S, Shen RY. Chronic stress impairs α1-adrenoceptor-induced endocannabinoid-dependent synaptic plasticity in the dorsal raphe nucleus. J Neurosci. 2014;34(44):14560-14570. doi:10.1523/JNEUROSCI.1310-14.2014421206125355210 Open DOISearch in Google Scholar

20. Paudel S, Wang S, Kim E, et al. Design, Synthesis, and Functional Evaluation of 1, 5-Disubstituted Tetrazoles as Monoamine Neurotransmitter Reuptake Inhibitors. Biomol Ther (Seoul). 2022;30(2):191-202. doi:10.4062/biomolther.2021.119890245934789584 Open DOISearch in Google Scholar

21. Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:54-63. doi:10.1016/j.pnpbp.2013.04.00923602950 Open DOISearch in Google Scholar

22. Velásquez-Martínez MC, Vázquez-Torres R, Rojas LV, Sanabria P, Jiménez-Rivera CA. Alpha-1 adrenoreceptors modulate GABA release onto ventral tegmental area dopamine neurons. Neuropharmacology. 2015;88:110-121. doi:10.1016/j.neuropharm.2014.09.002425251825261018 Open DOISearch in Google Scholar

23. Oberbeck R, Schmitz D, Wilsenack K, et al. Adrenergic modulation of survival and cellular immune functions during polymicrobial sepsis. Neuroimmunomodulation. 2004;11(4):214-223. doi:10.1159/00007843915249727 Open DOISearch in Google Scholar

24. Pongratz G, Straub RH. The sympathetic nervous response in inflammation. Arthritis Res Ther. 2014;16(6):504. doi:10.1186/s13075-014-0504-2439683325789375 Open DOISearch in Google Scholar

25. Starke K, Göthert M, Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev. 1989;69(3):864-989. doi:10.1152/physrev.1989.69.3.8642568648 Open DOISearch in Google Scholar

26. Uys MM, Shahid M, Harvey BH. Therapeutic Potential of Selectively Targeting the α2C-Adrenoceptor in Cognition, Depression, and Schizophrenia—New Developments and Future Perspective. Frontiers in Psychiatry. 2017;8. https://www.frontiersin.org/articles/10.3389/fpsyt.2017.0014410.3389/fpsyt.2017.00144555805428855875 Search in Google Scholar

27. Brosda J, Jantschak F, Pertz HH. α2-Adrenoceptors are targets for antipsychotic drugs. Psychopharmacology (Berl). 2014;231(5):801-812. doi:10.1007/s00213-014-3459-824488407 Open DOISearch in Google Scholar

28. Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev. 2012;36(10):2214-2225. doi:10.1016/j.neubiorev.2012.07.011350831022910678 Open DOISearch in Google Scholar

29. Srivastava AB, Mariani JJ, Levin FR. New directions in the treatment of opioid withdrawal. Lancet. 2020;395(10241):1938-1948. doi:10.1016/S0140-6736(20)30852-7738566232563380 Open DOISearch in Google Scholar

30. Holzer P, Holzer-Petsche U. Pharmacology of inflammatory pain: local alteration in receptors and mediators. Dig Dis. 2009;27(0 1):24-30. doi:10.1159/000268118437082920203494 Open DOISearch in Google Scholar

31. Ju JY, Kim KM, Lee S. Effect of preoperative administration of systemic alpha-2 agonists on postoperative pain: a systematic review and meta-analysis. Anesth Pain Med (Seoul). 2020;15(2):157-166. doi:10.17085/apm.2020.15.2.157771382633329808 Open DOISearch in Google Scholar

32. Spieth PP, Geier C, Reske AW. Alpha-2 agonists: back to the future of human anesthesia? Minerva Anestesiol. 2015;81(10):1058-1060. Search in Google Scholar

33. Zhang X, Bai X. New therapeutic uses for an alpha2 adrenergic receptor agonist--dexmedetomidine in pain management. Neurosci Lett. 2014;561:7-12. doi:10.1016/j.neulet.2013.12.03924373989 Open DOISearch in Google Scholar

34. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595-638. Search in Google Scholar

35. Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. Journal of Neuroimmunology. 2019;332:99-111. doi:10.1016/j.jneuroim.2019.04.00630999218 Open DOISearch in Google Scholar

36. Bergquist J, Tarkowski A, Ekman R, Ewing A. Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proceedings of the National Academy of Sciences. 1994;91(26):12912-12916. doi:10.1073/pnas.91.26.12912 Open DOISearch in Google Scholar

37. Cosentino M, Fietta AM, Ferrari M, et al. Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood. 2007;109(2):632-642. doi:10.1182/blood-2006-01-02842316985181 Open DOISearch in Google Scholar

38. Yamaguchi I, Kopin IJ. Plasma catecholamine and blood pressure responses to sympathetic stimulation in pithed rats. American Journal of Physiology-Heart and Circulatory Physiology. 1979;237(3):H305-H310. doi:10.1152/ajpheart.1979.237.3.H305474768 Open DOISearch in Google Scholar

39. Jang HS, Kim J, Padanilam BJ. Renal sympathetic nerve activation via α2-adrenergic receptors in chronic kidney disease progression. Kidney Res Clin Pract. 2019;38(1):6-14. doi:10.23876/j.krcp.18.0143648196930831675 Open DOISearch in Google Scholar

40. Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003 Jul;16(3):379-414. doi: 10.1128/CMR.16.3.379-414.2003. PMID: 12857774; PMCID: PMC164216.16421612857774 Open DOISearch in Google Scholar

41. Ferreira J. The Theory is Out There: The Use of ALPHA-2 Agonists in Treatment of Septic Shock. Shock. 2018;49(4):358-363. doi:10.1097/SHK.000000000000097928858141 Open DOISearch in Google Scholar

42. Anwar MS, Iskandar MZ, Parry HM, Doney AS, Palmer CN, Lang CC. The future of pharmacogenetics in the treatment of heart failure. Pharmacogenomics. 2015;16(16):1817-1827. doi:10.2217/pgs.15.12026555119 Open DOISearch in Google Scholar

eISSN:
2668-7763
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other