Otwarty dostęp

Formulation and Evaluation of Sustained Release Ibuprofen Matrix Tablets Using Starch from Maize Genotypes as Polymer


Zacytuj

1. Manu N, Opit GP, Osekre EA, Arthur FH, Mbata G, Armstrong P, Danso JK, McNeill SG, Campbell JF. Moisture content, insect pest infestation and mycotoxin levels of maize in markets in the northern region of Ghana. J Stored Prod Res 2019; 80:10-2010.1016/j.jspr.2018.10.007 Search in Google Scholar

2. Suleiman R, Rosentrater KA, Bern CJ. Evaluation of maize weevils Sitophilus zeamais Motschulsky infestation on seven varieties of maize. J Stored Prod Res. 2015; 64:97-10210.1016/j.jspr.2015.09.005 Search in Google Scholar

3. Martinez EM, Chapa-Oliver AM, Mejía-Teniente L, Torres-Pacheco I, Guevara González RG, Vazquez-Cruz MA, Cervantes-Landaverde JJ, Preciado-Ortiz RE. Genetic resistance to drought in maize and its relationship in aflatoxins production. Aflatoxins – Biochemistry and Molecular Biology. Guevara-Gonzalez RG, 2011; ed. Search in Google Scholar

4. Lee EA, Tollenaar M. Physiological Basis of Successful Breeding Strategies for Maize Grain Yield. Crop Sci. 2007; 47(3):202-215. Search in Google Scholar

5. Bakre LG, Osibajo DJ, Koiki AG, Bamiro OA. Material, compressional and tableting properties of Ipomea batatas (sweet potato) starch co-processed with silicon dioxide. Acta Pharm Scientia 2019; 57 (4): 21-37.10.23893/1307-2080.APS.05722 Search in Google Scholar

6. Okunlola A, Ghomorai T. Development of ibuprofen microspheres using acetylated plantain starches as polymer for sustained release. J Pharm Invest 2018; 48: 551-564.10.1007/s40005-017-0345-5 Search in Google Scholar

7. Builders PF, Anwunobi PA, Mbah CC, Adikwu MU. New Direct Compression Excipient from Tiger nut Starch: Physicochemical and Functional Properties. AAPS PharmSciTech 2013; 14 (2): 818-82710.1208/s12249-013-9968-7 Search in Google Scholar

8. Odeniyi MA, Ayorinde JO. Effects of Modification and Incorporation Techniques on Disintegrant Properties of Wheat (Triticum Aestivum) Starch in Metronidazole Tablet Formulations. Polim Med. 2014; 44 (3): 147-15. Search in Google Scholar

9. Singh N, Kaur A, Shevkani K. Maize: Grain Structure, Composition, Milling and Starch Characteristics. In: Chaudhary D., Kumar S., Langyan S. (eds) Maize: Nutrition Dynamics and Novel Uses. Springer, New Delhi 2014; 65-7610.1007/978-81-322-1623-0_5 Search in Google Scholar

10. Bakre LG, Adegbesan AD, Bamiro OA, Olayemi B, Kunle OO. Genetic modification of maize plant on the pharmaceutically important properties of its starch. Malaysian J Pharm Sci 2021 Manuscript Accepted for publication10.21315/mjps2021.19.2.4 Search in Google Scholar

11. Swain RP, Kumari TR, Panda S. Formulation development and evaluation of sustained release ibuprofen tablets with acrylic polymers (eudragit) and HPMC. Int J Pharm Pharmaceut Sci. 2016; 8(2) 131-135. Search in Google Scholar

12. Itiola OA, Odeku OA. Packing and cohesive properties of some locally extracted starches. Trop J Pharm Res 2005; 4:363-368 Search in Google Scholar

13. Higuchi T. Mechanism of sustained action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963; 52: 1145-1149.10.1002/jps.2600521210 Search in Google Scholar

14. Ritger R, Peppas NA. A simple equation for disposition of solute release - II. J Control Rel. 1987; 5: 37-42.10.1016/0168-3659(87)90035-6 Search in Google Scholar

15. Xu G, Sunada H. Influence of formation changes on drug release kinetics. Chem Pharm Bull. 1995; 43: 483-487.10.1248/cpb.43.4837774032 Search in Google Scholar

16. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001; 48: 139-57.10.1016/S0169-409X(01)00112-0 Search in Google Scholar

17. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanism of solute release from porous hydrophilic polymers. Int J Pharm. 1983; 15: 25-35.10.1016/0378-5173(83)90064-9 Search in Google Scholar

18. Bakre LG, Ladele BA. Development and evaluation of gastroretentive floating tablets of Ciprofloxacin using Chrysophyllum albidum gum. J Pharm Practice Res. 2019; 49: 240-245.10.1002/jppr.1503 Search in Google Scholar

19. Kaleemullah M, Jiyauddin K, Thiban E, Rasha S, Al-Dhalli S, Budiasih S, Gamal O.E, Fadli A, Eddy Y. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage. Saudi Pharm J. 2017; 25:770-779.10.1016/j.jsps.2016.10.006550664128725150 Search in Google Scholar

20. Adedokun MO, Ayorinde JO, Odeniyi MA. Compressional, mechanical and release properties of a novel gum in paracetamol tablet formulations. Curr Iss Pharm Med Sci. 2014; 27:187-194.10.1515/cipms-2015-0013 Search in Google Scholar

21. Bamiro OA, Owoduni AS, Bakre LG, Uwaezuoke OJ. Evaluation of Terminalia randii Baker F. gum as a disintegrant in paracetamol tablet formulation. J Chem Pharm Res. 2014; 6:155-159. Search in Google Scholar

22. Olobayo O. Kunle (November 29th 2019). Starch Source and Its Impact on Pharmaceutical Applications, Chemical Properties of Starch, Martins Emeje, IntechOpen, DOI: 10.5772/intechopen.89811. Available from: https://www.intechopen.com/books/chemical-properties-of-starch/starch-source-and-its-impact-on-pharmaceutical-applications10.5772/intechopen.89811 Search in Google Scholar

23. Adeleye OA, Femi-Oyewo MN, Odeniyi MA, Ajala TO. Evaluation of Cissus populnea gum as a directly compressible matrix system for tramadol hydrochloride extended-release tablet. J Applied Pharm Sci. 2019; 9(2): 105-111.10.7324/JAPS.2019.90214 Search in Google Scholar

24. Lubrizol advanced materials, inc. Formulating controlled release tablets and capsules with carbopol polymers. Pharm Bull. 2011; 31:1-22 Search in Google Scholar

eISSN:
2668-7763
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other