Zacytuj

1. Cohen MC, Cohen S. Cytokine function: a study in biologic diversity. Am J Clin Pathol. 1996;105(5):589-598.10.1093/ajcp/105.5.5898623768 Search in Google Scholar

2. García Morán GA, Parra-Medina R, Cardona AG, et al. Cytokines, chemokines and growth factors. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., editors. Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 9. Search in Google Scholar

3. Bienvenu J, Monneret G, Fabien N, Revillard JP. The clinical usefulness of the measurement of cytokines. Clin Chem Lab Med. 2000;38(4):267-285.10.1515/CCLM.2000.04010928646 Search in Google Scholar

4. Smith SG, Smits K, Joosten SA, et al. Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines. PLoS One. 2015;10(9):e0138042.10.1371/journal.pone.0138042456943626367374 Search in Google Scholar

5. Maecker HT, Rinfret A, D’Souza P, et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 2005;6:13.10.1186/1471-2172-6-13118407715978127 Search in Google Scholar

6. Jaimes MC, Maecker HT, Yan M, et al. Quality assurance of intracellular cytokine staining assays: analysis of multiple rounds of proficiency testing. J Immunol Methods. 2011;363(2):143-157.10.1016/j.jim.2010.08.004300376720727897 Search in Google Scholar

7. De Rosa SC. Vaccine applications of flow cytometry. Methods. 2012;57(3):383-391.10.1016/j.ymeth.2012.01.001334978622251671 Search in Google Scholar

8. Shulman N, Bellew M, Snelling G, et al. Development of an automated analysis system for data from flow cytometric intracellular cytokine staining assays from clinical vaccine trials. Cytometry A. 2008;73(9):847-856.10.1002/cyto.a.20600259108918615598 Search in Google Scholar

9. Goode I, Xu H, Ildstad ST. Regulatory B cells: the new “it” cell. Transplant Proc. 2014;46(1):3-8.10.1016/j.transproceed.2013.08.07524216174 Search in Google Scholar

10. Zelle-Rieser C, Thangavadivel S, Biedermann R, et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol. 2016;9(1):116.10.1186/s13045-016-0345-3509394727809856 Search in Google Scholar

11. Bakhach J. The cryopreservation of composite tissues: Principles and recent advancement on cryopreservation of different type of tissues. Organogenesis. 2009;5(3):119-126.10.4161/org.5.3.9583278109120046674 Search in Google Scholar

12. Perdomo-Celis F, Salgado DM, Castañeda DM, Narváez CF. Viability and Functionality of Cryopreserved Peripheral Blood Mononuclear Cells in Pediatric Dengue. Clin Vaccine Immunol. 2016;23(5):417-426.10.1128/CVI.00038-16 Search in Google Scholar

13. Dyer WB, Pett SL, Sullivan JS, et al. Substantial improvements in performance indicators achieved in a peripheral blood mononuclear cell cryopreservation quality assurance program using single donor samples. Clin Vaccine Immunol. 2007;14(1):52-59.10.1128/CVI.00214-06 Search in Google Scholar

14. Disis ML, dela Rosa C, Goodell V, et al. Maximizing the retention of antigen specific lymphocyte function after cryopreservation. J Immunol Methods. 2006;308(1-2):13-18.10.1016/j.jim.2005.09.011 Search in Google Scholar

15. Yang J, Diaz N, Adelsberger J, et al. The effects of storage temperature on PBMC gene expression. BMC Immunol. 2016;17:6.10.1186/s12865-016-0144-1 Search in Google Scholar

16. Kreher CR, Dittrich MT, Guerkov R, et al. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J Immunol Methods. 2003;278(1-2):79-93.10.1016/S0022-1759(03)00226-6 Search in Google Scholar

17. Şerban GM, Mănescu IB, Manu DR, Dobreanu M. Optimization of a density gradient centrifugation protocol for isolation of peripheral blood mononuclear cells. Acta Medica Marisiensis 2018;64(2):83-90.10.2478/amma-2018-0011 Search in Google Scholar

18. Mănescu IB, Şerban GM, Manu DR, Dobreanu M. Variability of ex-vivo stimulated T-cells secretory profile in healthy subjects. Revista Romana de Medicina de Laborator. 2020;28(1), 75-89. Search in Google Scholar

19. Wang SY, Hsu ML, Tzeng CH, et al. The influence of cryopreservation on cytokine production by human T lymphocytes. Cryobiology. 1998;37(1):22-29.10.1006/cryo.1998.20949698426 Search in Google Scholar

20. Kleeberger CA, Lyles RH, Margolick JB, Rinaldo CR, et al. Viability and recovery of peripheral blood mononuclear cells cryopreserved for up to 12 years in a multicenter study. Clin Diagn Lab Immunol. 1999;6(1):14-19.10.1128/CDLI.6.1.14-19.1999956539874657 Search in Google Scholar

21. Kenmochi T, Asano T, Maruyama M, et al. Cryopreservation of human pancreatic islets from non-heart-beating donors using hydroxyethyl starch and dimethyl sulfoxide as cryoprotectants. Cell Transplant. 2008;17(1-2):61-67.10.3727/00000000878390702618468236 Search in Google Scholar

22. Weinberg A, Zhang L, Brown D, et al. Viability and functional activity of cryopreserved mononuclear cells. Clinical and Diagnostic Laboratory Immunology. 2000 Jul;7(4):714-716.10.1128/CDLI.7.4.714-716.20009594210882680 Search in Google Scholar

23. Germann A, Oh YJ, Schmidt T, Schön U, et al. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Cryobiology. 2013;67(2):193-200.10.1016/j.cryobiol.2013.06.01223850825 Search in Google Scholar

24. Hunt CJ. Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies. Transfus Med Hemother. 2019;46(3):134-150.10.1159/000497289655833831244583 Search in Google Scholar

25. Hønge BL, Petersen MS, Olesen R, et al. Optimizing recovery of frozen human peripheral blood mononuclear cells for flow cytometry. PLoS One. 2017;12(11):e0187440.10.1371/journal.pone.0187440566560029091947 Search in Google Scholar

26. Lemieux J, Jobin C, Simard C, Néron S. A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and two-dimensional visualization analysis. J Immunol Methods. 2016;434:73-82.10.1016/j.jim.2016.04.01027129808 Search in Google Scholar

27. Prussin C. Cytokine flow cytometry: understanding cytokine biology at the single-cell level. J Clin Immunol. 1997;17(3):195-204.10.1023/A:1027350226435 Search in Google Scholar

28. Ai W, Li H, Song N, et al. Optimal method to stimulate cytokine production and its use in immunotoxicity assessment. Int J Environ Res Public Health. 2013;10(9):3834-3842.10.3390/ijerph10093834379951623985769 Search in Google Scholar

29. Okusawa S, Gelfand JA, Ikejima T, et al. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest. 1988;81(4):1162-1172.10.1172/JCI1134313296453258319 Search in Google Scholar

30. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12(1):49-62.10.1038/nrrheum.2015.169480967526656660 Search in Google Scholar

31. Fahlman C, Jacobsen FW, Veiby OP, McNiece IK, et al. Tumor necrosis factor-alpha (TNF-alpha) potently enhances in vitro macrophage production from primitive murine hematopoietic progenitor cells in combination with stem cell factor and interleukin-7: novel stimulatory role of p55 TNF receptors. Blood. 1994;84(5):1528-1533.10.1182/blood.V84.5.1528.1528 Search in Google Scholar

32. Witsell AL, Schook LB. Tumor necrosis factor alpha is an autocrine growth regulator during macrophage differentiation. Proc Natl Acad Sci U S A. 1992;89(10):4754-8.10.1073/pnas.89.10.4754491621374912 Search in Google Scholar

33. Conte D, Holcik M, Lefebvre CA, et al. Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol Cell Biol. 2006;26(2):699-708.10.1128/MCB.26.2.699-708.2006 Search in Google Scholar

34. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis Primers. 2016;2:16045.10.1038/nrdp.2016.45 Search in Google Scholar

35. Ford T, Wenden C, Mbekeani A, et al. Cryopreservation-related loss of antigen-specific IFNγ producing CD4+ T-cells can skew immunogenicity data in vaccine trials: Lessons from a malaria vaccine trial substudy. Vaccine. 2017;35(15):1898-1906.10.1016/j.vaccine.2017.02.038 Search in Google Scholar

36. Bandrés E, Merino J, Vázquez B, et al. The increase of IFN-gamma production through aging correlates with the expanded CD8(+high) CD28(-)CD57(+) subpopulation. Clin Immunol. 2000;96(3):230-235.10.1006/clim.2000.4894 Search in Google Scholar

37. Sakata-Kaneko S, Wakatsuki Y, Matsunaga Y, et al. Altered Th1/Th2 commitment in human CD4+ T cells with ageing. Clin Exp Immunol. 2000;120(2):267-273.10.1046/j.1365-2249.2000.01224.x Search in Google Scholar

38. Alberti S, Cevenini E, Ostan R, et al. Age-dependent modifications of Type 1 and Type 2 cytokines within virgin and memory CD4+ T cells in humans. Mech Ageing Dev. 2006;127(6):560-566.10.1016/j.mad.2006.01.014 Search in Google Scholar

39. van der Geest KSM, Kroesen BJ, Horst G, Abdulahad WH, et al. Impact of Aging on the Frequency, Phenotype, and Function of CD161-Expressing T Cells. Front Immunol. 2018;9:752.10.3389/fimmu.2018.00752 Search in Google Scholar

40. Jang TH, Park SC, Yang JH, et al. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12-18.10.1016/j.imr.2016.12.001 Search in Google Scholar

41. Ozkavukcu S, Erdemli E, Isik A, et al. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J Assist Reprod Genet. 2008;25(8):403-411.10.1007/s10815-008-9232-3 Search in Google Scholar

42. Hubálek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology. 2003;46(3):205-229.10.1016/S0011-2240(03)00046-4 Search in Google Scholar

43. Yong KW, Pingguan-Murphy B, Xu F, et al. Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci Rep. 2015;5:9596.10.1038/srep09596439783525872464 Search in Google Scholar

44. Janz Fde L, Debes Ade A, Cavaglieri Rde C, et al. Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J Biomed Biotechnol. 2012;2012:649353.10.1155/2012/649353336172022665987 Search in Google Scholar

45. Pegg DE. Principles of cryopreservation. Methods Mol Biol. 2007;368:39-57.10.1007/978-1-59745-362-2_318080461 Search in Google Scholar

46. Fry LJ, Querol S, Gomez SG, McArdle S, et al. Assessing the toxic effects of DMSO on cord blood to determine exposure time limits and the optimum concentration for cryopreservation. Vox Sang. 2015;109(2):181-190.10.1111/vox.1226725899864 Search in Google Scholar

47. Dunn HS, Haney DJ, Ghanekar SA, Stepick-Biek P, et al. Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy human donors. J Infect Dis. 2002;186(1):15-22.10.1086/34107912089657 Search in Google Scholar

eISSN:
2668-7763
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other