Otwarty dostęp

Drug-Induced Liver Toxicity

, , , , , ,  oraz   
23 lis 2024

Zacytuj
Pobierz okładkę

Bhakuni GS, Bedi O, Bariwal J, et al. Animal models of hepatotoxicity. Inflamm Res, 2016, 65(1):13–24. https://doi.org/10.1007/s00011-015-0883-0 Search in Google Scholar

Andrade RJ, Robles M, Fernández-Castañer A, et al. Assessment of drug-induced hepatotoxicity in clinical practice: a challenge for gastroenterologists. World J Gastroenterol, 2017, 13(3):329-340. https://doi.org/10.3748/wjg.v13.i3.329 Search in Google Scholar

Thompson WL, Takebe T. Human liver model systems in a dish. Dev Growth Differ, 2021, 63(1):47–58. https://doi.org/10.1111/dgd.12708 Search in Google Scholar

Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology, 2006, 43(1):54–62. https://doi.org/10.1002/hep.21060 Search in Google Scholar

MacParland SA, Liu JC, Ma XZ, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun, 2018, 9(1):4383. https://doi.org/10.1038/s41467-018-06318-7 Search in Google Scholar

Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol, 2017, 27(21):1147–1151. https://doi.org/10.1016/j.cub.2017.09.019 Search in Google Scholar

Simeonova R, Vitcheva V, Kondeva-Burdina M, et al. Hepato-protective and antioxidant effects of saponarin, isolated from Gypsophila trichotoma Wend. on paracetamol-induced liver damage in rats. BioMed Res Int, 2013, 2013:757126. https://doi.org/10.1155/2013/757126 Search in Google Scholar

Croom E. Metabolism of xenobiotics of human environments. Prog Mol Biol Transl Sci, 2012, 112:31-88. https://doi.org/10.1016/B978-0-12-415813-9.00003-9 Search in Google Scholar

Naik A, Beliþ A, Zanger UM, et al. Molecular interactions between NAFLD and xenobiotic metabolism. Front Genet, 2013, 4:2. https://doi.org/10.3389/fgene.2013.00002 Search in Google Scholar

Hodgson E, Rose RL. Metabolism of toxicants. In: A Textbook of Modern Toxicology. 4th ed. E. Hodgson (Ed.). New Jersey, John Wiley & Sons, Inc., Hoboken, 2010, 115–155. Search in Google Scholar

Omiecinski CJ, Vanden Heuvel JP, Perdew GH, et al. Xeno-biotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxici-ties. Toxicol Sci, 2011, 120(1):49-75. https://doi.org/10.1093/toxsci/kfq338 Search in Google Scholar

LeBlanc GA. Phase II—conjugation of toxicants. In: Molecular and biochemical toxicology. 4th ed. R. C. Smart, E. Hodgson (Eds.). New Jersey, John Wiley & Sons, Inc., Hoboken, 2008, 219–237. Search in Google Scholar

Tittarelli R, Pellegrini M, Scarpellini MG, et al. Hepatotoxicity of paracetamol and related fatalities. Eur Rev Med Pharmacol Sci, 2017, 21(1):95-101. https://www.europeanreview.org/wp/wp-content/uploads/95-101-Hepatotoxicity-of-paracetamoland-related-fatalities.pdf Search in Google Scholar

Leung L. From ladder to platform: a new concept for pain management. J Prim Health Care, 2012, 4:254-258. DOI:10.1071/HC12258 Search in Google Scholar

Massart J, Begriche K, Fromenty B. Cytochrome P450 2E1 should not be neglected for acetaminophen-induced liver injury in metabolic diseases with altered insulin levels or glucose homeostasis. Clin Res Hepatol Gastroenterol, 2021, 45(1):101470. https://doi.org/10.1016/j.clinre.2020.05.018 Search in Google Scholar

Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: an update review. Arch Toxicol, 2015, 89:193-199. https://doi.org/10.1007/s00204-014-1432-2 Search in Google Scholar

Begriche K, Penhoat C, Bernabeu-Gentey P, et al. Acetaminophen-induced hepatotoxicity in obesity and nonalcoholic fatty liver disease: a critical review. Livers, 2023, 3(1):33-53. https://doi.org/10.3390/livers3010003 Search in Google Scholar

McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res, 2013, 30:2174-2187. https://doi.org/10.1007/s11095-013-1007-6 Search in Google Scholar

Yoon E, Babar A, Choudhary M, et al. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol, 2016, 28:131-142. https://doi.org/10.14218/JCTH.2015.00052 Search in Google Scholar

Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev, 2012, 44:88-106. https://doi.org/10.3109/03602532.2011.602688 Search in Google Scholar

Meunier L, Larrey D. Recent advances in hepatotoxicity of non steroidal anti-inflammatory drugs. Annals of Hepatology, 2018, 17(2):187–191. https://doi.org/10.5604/01.3001.0010.8633 Search in Google Scholar

Simmons DL, Botting RM, Hla T. Ciclooxigenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev, 2004, 56(3):387-437. https://doi.org/10.1124/pr.56.3.3 Search in Google Scholar

Hoffmann C. COX-2 in brain and spinal cord implications for therapeutic use. Current medicinal chemistry, 2000, 7:1113-1120. https://doi.org/10.2174/0929867003374282 Search in Google Scholar

Bacchi S, Palumbo P, Sponta A, et al. Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review. Antiinflamm Antiallergy Agents Med Chem, 2012, 11(1):52–64. https://doi.org/10.2174/187152312803476255 Search in Google Scholar

Lewis JH, Stine JG. Nonsteroidal antiinflammatory drugs and leukotriene receptor antagonists. In: Drug-induced liver disease. 3rd ed. N. Kaplowitz, D. L. DeLeve (Eds.). Paris, Elsevier, 2013, 369-401. Search in Google Scholar

O’Connor N, Dargan PI, Jones AL. Hepatocellular damage from non-steroidal anti-inflammatory drugs. QJM, 2003, 96(11):787–791. https://doi.org/10.1093/qjmed/hcg138 Search in Google Scholar

Zoubek ME, Lucena MI, Andrade RJ, et al. Systematic review: ibuprofen-induced liver injury. Aliment Pharmacol Ther, 2020, 51(6):603-611. https://doi.org/10.1111/apt.15645 Search in Google Scholar

Schmeltzer PA, Kosinski AS, Kleiner DE, et al. Liver injury from nonsteroi dal anti-inflammatory drugs in the United States. Liver Int, 2016, 36:603-609. https://doi.org/10.1111/liv.13032 Search in Google Scholar

Nouri A, Heidarian E, Nikoukar M. Effects of N-acetyl cysteine on oxidative stress and TNF-Į gene expression in diclofenac-induced hepatotoxicity in rats. Toxicol Mech Methods, 2017, 27(8):561–567. https://doi.org/10.1080/15376516.2017.1334732 Search in Google Scholar

Kalra V. Reyes Syndrome. Apollo Medicine, 2008, 5(2):106–110. https://doi.org/10.1016/S0976-0016(11)60130-0 Search in Google Scholar

Sahu CR. Mechanisms involved in toxicity of liver caused by piroxicam in mice and protective effects of leaf extract of Hibiscus rosa-sinensis L. Clin Med Insights Arthritis Musculoskelet Disord, 2016, 9:9-13. https://doi.org/10.4137/CMAMD.S29463 Search in Google Scholar

Badawi MS. Histological study of the protective role of ginger on piroxicam-induced liver toxicity in mice. J Chin Med Assoc, 2019, 82(1):11-18. https://doi.org/10.1016/j.jcma.2018.06.006 Search in Google Scholar

Rainsford K. Anti-inflammatory drugs in the 21st century. Sub-cellular biochemistry, 2007, 42:3–27. https://doi.org/10.1007/1-4020-5688-5_1 Search in Google Scholar

Famularo G, Gasbarrone L, Minisola G. Probable celecoxib-induced hepatorenal syndrome. Ann Pharmacother, 2012, 46:610–611. https://doi.org/10.1345/aph.1Q671 Search in Google Scholar

Lee CH, Wang JD, Chen PC. Increased risk of hospitalization for acute hepatitis in patients with previous exposure to NSAIDs. Pharmacoepidemiol Drug Saf, 2010, 19:708–714. https://doi.org/10.1002/pds.1966 Search in Google Scholar

Pugh AJ, Barve AJ, Falkner K, et al. Drug-induced hepatotoxicity or drug-induced liver injury. Clin Liver Dis, 2009, 13(2):277-294. https://doi.org/10.1016/j.cld.2009.02.008 Search in Google Scholar

Appiah J, Prasad A, Shah V, et al. Amoxicillin-clavula-nate induced liver injury in a young female. Cureus, 2023, 15(1):e33445. https://doi.org/10.7759/cureus.33445 Search in Google Scholar

Polson JE. Hepatotoxicity due to antibiotics. Clin Liver Dis, 2007, 11(3):549-561. https://doi.org/10.1016/j.cld.2007.06.009 Search in Google Scholar

O’Donohue J, Oien KA, Donaldson P, et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II associations. Gut, 2000, 47:717–720. https://doi.org/10.1136/gut.47.5.717 Search in Google Scholar

Fox JC, Szyjkowski RS, Sanderson SO, et al. Progressive cholestatic liver disease associated with clarithromycin treatment. The Journal of Clinical Pharmacology, 2002, 42(6):676-680. https://doi.org/10.1177/00970002042006011 Search in Google Scholar

Westphal JF, Brogard JM. Antibacterials and antifungal agents. In: Drug-induced liver disease. N. Kaplowitz, L. D. DeLeve (Eds.). New York, Marcel-Dekker, 2003, 471–504. Search in Google Scholar

Robles M, Toscano E, Cotta J, et al. Antibiotic-induced liver toxicity: mechanisms, clinical features and causality assessment. Curr Drug Saf, 2010, 5(3):212-222. https://doi.org/10.2174/157488610791698307 Search in Google Scholar

Löscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs, 2002, 16(10):669-694. https://doi.org/10.2165/00023210-200216100-00003 Search in Google Scholar

Smits JE, Wallenburg E, van Spanje A, et al. Valproate intoxication in a patient with blood valproate levels within therapeutic range. J Clin Psychiatry, 2017, 78(4):413-414. https://doi.org/10.4088/JCP.15cr10147 Search in Google Scholar

LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012. Search in Google Scholar

Patel AR, Nagalli S. Valproate Toxicity. Treasure Island (FL): Stat-Pearls [Updated 2021 Nov 25; cited 2022 March 4]. Available from: https://www.statpearls.com/ArticleLibrary/viewarticle/30391 Search in Google Scholar

Mahmoud AM, Hussein OE, Hozayen WG, et al. Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPARȖ and Nrf2: Protective effect of 18ȕ-Glycyrrhetinic acid. Chem Biol Interact, 2017, 270:59-72. https://doi.org/10.1016/j.cbi.2017.04.009 Search in Google Scholar

Abo-Haded HM, Elkablawy MA, Al-Johani Z, et al. Hepato-protective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One, 2017, 12(3):e0174295. https://doi.org/10.1371/journal.pone.0174295 Search in Google Scholar

Ezhilarasan D. Hepatotoxic potentials of methotrexate: understanding the possible toxicological molecular mechanisms. Toxicology, 2021, 458:152840. https://doi.org/10.1016/j.tox.2021.152840 Search in Google Scholar

Santhakumar P, Roy A, Ganesh MK, et al. Ethanolic extract of Capparis decidua fruit ameliorates methotrexate-induced hepatotoxicity by suppressing oxidative stress and inflammation by modulating nuclear factor-kappa B signaling pathway. Pharmacogn Mag, 2021, 17:143-150. DOI:10.4103/pm.pm_402_20 Search in Google Scholar

Combrink M, du Preez I. Metabolomics describes previously unknown toxicity mechanisms of isoniazid and rifampicin. Toxicology letters, 2020, 322:104-110. https://doi.org/10.1016/j.toxlet.2020.01.018 Search in Google Scholar

Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid-induced hepatotoxicity: then and now. Br J Clin Pharmacol, 2016, 81(6):1030-1036. doi:10.1111/bcp.12885 Search in Google Scholar

Jia ZL, Cen J, Wang JB, et al. Mechanism of isoniazid-induced hepatotoxicity in zebrafish larvae: activation of ROS-mediated ERS, apoptosis and the Nrf2 pathway. Chemosphere, 2019, 227:541-550. https://doi.org/10.1016/j.chemosphere.2019.04.026 Search in Google Scholar

Lei S, Gu R, Ma X. Clinical perspectives of isoniazid-induced liver injury. Liver Research, 2021, 5:45-52. https://doi.org/10.1016/j.livres.2021.02.001 Search in Google Scholar

Yang S, Hwang SJ, Park JY, et al. Association of genetic polymorphisms of CYP2E1, NAT2, GST, and SLCO1B1, with the risk of anti-tuberculosis drug-induced liver injury: a systematic review and meta-analysis. BMJ Open, 2019, 9(8):e027940. https://doi.org/10.1136/bmjopen-2018-027940 Search in Google Scholar

Santoso SB, Pribadi P, Irham LM. Isoniazid-induced liver injury risk level in different variants of N-acetyltransferase 2 (NAT2) polymorphisms: a literature review. Pharmacia, 2023, 70(4):973-981. https://doi.org/10.3897/pharmacia.70.e109869 Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medycyna, Podstawowe nauki medyczne, Immunologia, Medycyna kliniczna, Medycyna kliniczna, inne