Otwarty dostęp

Myocardial Viability – An Important Decision Making Factor in the Treatment Protocol for Patients with Ischemic Heart Disease


Zacytuj

1. Benjamin EJ, Muntner P, Alonso A, et al, on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2019 update: a report from the American Heart Association [published correction appears in Circulation. 2020;141:33]. Circulation. 2019; 139:56–528. Search in Google Scholar

2. Molchanova-Cook O, Chen W. Role of FDG-PET in Evaluation of Myocardial Viability. PET Clinics. 2011; 6(4):383-391.10.1016/j.cpet.2011.08.003 Search in Google Scholar

3. Cahill TJ, Kharbanda RK. Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention: mechanisms, incidence and identification of patients at risk. World J Cardiol. 2017; 9:407-415.10.4330/wjc.v9.i5.407 Search in Google Scholar

4. Goldberg L, Mekel J, Landless P, et al. Myocardial viability-mechanisms of reversible myocardial dysfunction and diagnosis in coronary artery disease. Cardiovasc J S Afr. 2001; 12(3):169-75. Search in Google Scholar

5. Lim SP, Mc Ardle BA, Beanlands RS, et al. Myocardial Viability: It is Still Alive. Semin Nucl Med. 2014; 44(5):358-374.10.1053/j.semnuclmed.2014.07.003 Search in Google Scholar

6. Gunning MG, Kaprielian RR, Pepper J, et al. The histology of viable and hibernating myocardium in relation to imaging characteristics. J Am Coll Cardiol. 2002; 39:428-435.10.1016/S0735-1097(01)01766-1 Search in Google Scholar

7. Vanoverschelde JL, Wijns W, Borgers M, et al. Chronic myocardial hibernation in humans: from bedside to bench. Circulation. 1997; 95:1961-1971.10.1161/01.CIR.95.7.1961 Search in Google Scholar

8. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989; 117(1):211-21.10.1016/0002-8703(89)90685-6 Search in Google Scholar

9. Chareonthaitawee P, Gersh BJ, Araoz PA, et al. Revascularization in Severe Left Ventricular Dysfunction. J Am Coll Cardiol. 2005; 46(4):567-74.10.1016/j.jacc.2005.03.07216098417 Search in Google Scholar

10. Bello D, Fieno DS, Kim RJ, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol. 2005; 45:1104-1108.10.1016/j.jacc.2004.12.05715808771 Search in Google Scholar

11. Patel H, Mazur W, Williams KA, et al. Myocardial viability–State of the art: Is it still relevant and how to best assess it with imaging? Trends Cardiovasc Med. 2018; 28(1):24-37.10.1016/j.tcm.2017.07.00128735783 Search in Google Scholar

12. Taegtmeyer H, Golfman L, Sharma S, et al. Linking Gene Expression to Function: Metabolic Flexibility in the Normal and Diseased Heart. Ann NY Acad Sci. 2004; 1015: 202-213.10.1196/annals.1302.01715201161 Search in Google Scholar

13. Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963; 281(7285), 785-789.10.1016/S0140-6736(63)91500-9 Search in Google Scholar

14. Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of Energy Metabolism of the Heart during Acute Increase in Heart Work. J Biol Chem. 1998; 273(45):29530-39.10.1074/jbc.273.45.29530 Search in Google Scholar

15. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; 85:1093-1129.10.1152/physrev.00006.2004 Search in Google Scholar

16. Van Bilsen M, Smeets PJH, Gilde AJ, et al. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res. 2004; 61:218-226.10.1016/j.cardiores.2003.11.014 Search in Google Scholar

17. Van Bilsen M, van Nieuwenhoven FA, van der Vusse GJ. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc Res. 2008; 81(3):420-428.10.1093/cvr/cvn282 Search in Google Scholar

18. Kantor PF, Robertson MA, Coe JY, et al. Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. J Am Coll Cardiol. 1999; 33:1724-1734.10.1016/S0735-1097(99)00063-7 Search in Google Scholar

19. Sack MN, Rader TA, Park S, et al. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996; 94:2837-2842.10.1161/01.CIR.94.11.2837 Search in Google Scholar

20. Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab. 2003; 284(5):E855-E862.10.1152/ajpendo.00526.200212676647 Search in Google Scholar

21. McGarry JD, Brown NF. The Mitochondrial Carnitine Palmitoyltransferase System – From Concept to Molecular Analysis. Eur J Biochem. 1999; 244(1):1-14.10.1111/j.1432-1033.1997.00001.x Search in Google Scholar

22. McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977; 60(1):265-270.10.1172/JCI108764372365874089 Search in Google Scholar

23. Goodwin GW, Taegtmeyer H. Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am J Physiol. 1999; 277(4):772-777.10.1152/ajpendo.1999.277.4.E772 Search in Google Scholar

24. Young ME, Goodwin GW, Ying J, et al. Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am J Physiol. 2001; 280(3):471-479.10.1152/ajpendo.2001.280.3.E47111171602 Search in Google Scholar

25. Garcia MJ, Kwong RY, Scherrer-Crosbie M, et al. State of the art: imaging for myocardial viability: a scientific statement from the American Heart Association. Circ Cardiovasc Imaging. 2020; 13:e000053.10.1161/HCI.000000000000005332833510 Search in Google Scholar

26. Madsen S, Dias AH, Lauritsen KM, et al. Myocardial Viability Testing by Positron Emission Tomography: Basic Concepts, Mini-Review of the Literature and Experience From a Tertiary PET Center. Semin Nucl Med. 2020; 50(3):248-259.10.1053/j.semnuclmed.2020.02.01032284111 Search in Google Scholar

27. D’hooge J, Konofagou E, Jamal F, et al. Two-dimensional ultrasonic strain rate measurement of the human heart in vivo. IEEE Trans. Ultrason Ferroelectr Freq Control. 2002; 49:281-286.10.1109/58.985712 Search in Google Scholar

28. Reisner SA, Lysyansky P, Agmon Y, et al. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr. 2004; 17:630-633.10.1016/j.echo.2004.02.011 Search in Google Scholar

29. Serri K, Reant P, Lafitte M, et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006; 47:1175-1181.10.1016/j.jacc.2005.10.061 Search in Google Scholar

30. Gjesdal O, Hopp E, Vartdal T, et al. Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci. 2007; 113(6):287-296.10.1042/CS20070066 Search in Google Scholar

31. Li DL, Kronenberg MW. Myocardial Perfusion and Viability Imaging in Coronary Artery Disease: Clinical Value in Diagnosis, Prognosis, and Therapeutic Guidance. The Am J Med. 2021; 134(8): 968-975.10.1016/j.amjmed.2021.03.011 Search in Google Scholar

32. Klein C, Schmal TR, Nekolla SG, et al. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2007; 9(4):653-658.10.1080/10976640601105614 Search in Google Scholar

33. Mewton N, Liu CY, Croisille P, et al. Assessment of myocar-dial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011; 57(8):891-903.10.1016/j.jacc.2010.11.013 Search in Google Scholar

34. Jimenez JL, Crean, AM, Wintersperger BJ. Late Gadolinium Enhancement Imaging in Assessment of Myocardial Viability. Radiol Clin North Am. 2015; 53(2): 397-411.10.1016/j.rcl.2014.11.004 Search in Google Scholar

35. Cwajg JM, Cwajg E, Nagueh SF, et al. End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution T1-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol. 2000; 35:1152-1161.10.1016/S0735-1097(00)00525-8 Search in Google Scholar

36. Shah DJ, Kim HW, James O, et al. Prevalence of regional myocardial thinning and relationship with myocardial scarring in patients with coronary artery disease. JAMA. 2013; 309:909-918.10.1001/jama.2013.1381397945623462787 Search in Google Scholar

37. Perrone-Filardi P, Pace L, Prastaro M, et al. Assessment of myocardial viability in patients with chronic coronary artery disease: rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation. 1996; 94:2712-2719.10.1161/01.CIR.94.11.2712 Search in Google Scholar

38. Taillefer R, DePuey EG, Udelson JE, et al. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol. 1997; 29:69-77.10.1016/S0735-1097(96)00435-4 Search in Google Scholar

39. Burrell S, MacDonald A. Artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol. 2006; 34:193-211. Search in Google Scholar

40. Crane P, Laliberte R, Heminway S, et al. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med. 1993; 20:20-25.10.1007/BF022612417678396 Search in Google Scholar

41. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation. 2003; 108:1404-1418.10.1161/01.CIR.0000080946.42225.4D12975245 Search in Google Scholar

42. Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998; 97:535-43.10.1161/01.CIR.97.6.535 Search in Google Scholar

43. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011; 124:2215-24.10.1161/CIRCULATIONAHA.111.050427349510622007073 Search in Google Scholar

44. Mikail N, Hyafil F. SPECT Imaging of Myocardial Viability, Reference Module in Biomedical Sciences. Elsevier. 2021; ISBN 9780128012383.10.1016/B978-0-12-822960-6.00108-3 Search in Google Scholar

45. Ma H, Li S, Wu Z, et al. Comparison of 99mTc-NDBODC5 and 99mTc-MIBI of myocardial perfusion imaging for diagnosis of coronary artery disease. Biomed Res Int. 2013; 2013:145427.10.1155/2013/145427369311623841052 Search in Google Scholar

46. Maddahi J, Packard RR. Cardiac PET perfusion tracers: Current status and future directions. Semin Nucl Med. 2014; 44:333-343.10.1053/j.semnuclmed.2014.06.011433314625234078 Search in Google Scholar

47. Gewirtz H, Dilsizian V. Myocardial viability: survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res. 2017; 120:1197-1212.10.1161/CIRCRESAHA.116.30789828360350 Search in Google Scholar

48. Gheorghiade M, Sopko G, De Luca L, et al. Navigating the crossroads of coronary artery disease and heart failure. Circulation. 2006; 114:1202-1213.10.1161/CIRCULATIONAHA.106.62319916966596 Search in Google Scholar

49. Møller JE, Egstrup K, Køber L, et al. Prognostic importance of systolic and diastolic function after acute myocardial infarction. Am Heart J. 2003; 145:147-53.10.1067/mhj.2003.4612514667 Search in Google Scholar

50. Velazquez EJ, Lee KL, O’Connor CM, et al. The rationale and design of the Surgical Treatment for Ischemic Heart Failure (STICH) Trial. J Thorac Cardiovasc Surg. 2007; 134:1540-7.10.1016/j.jtcvs.2007.05.069363886718023680 Search in Google Scholar

51. Panza JA, Ellis AM, Al-Khalidi HR et al. Myocardial Viability and Long-Term Outcomes in Ischemic Cardiomyopathy. NEJM. 2019; 381(8):739-748.10.1056/NEJMoa1807365681424631433921 Search in Google Scholar

52. Bonow RO, Maurer G, Lee KL, et al. Myocardial Viability and Survival in Ischemic Left Ventricular Dysfunction. NEJM. 2011; 364(17):1617-1625.10.1056/NEJMoa1100358329090121463153 Search in Google Scholar

eISSN:
2719-5384
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other