Otwarty dostęp

Infection, Inflammation and Immunity in Covid-19 Infection


Zacytuj

1. Yang, P., Wang, X. COVID-19: a new challenge for human beings. Cell. Mol. Immunol. 2020, 17 (5), 555−557. Search in Google Scholar

2. Zumla, A., Chan, J. F. W., Azhar, E. I., et al. Coronaviruses − drug discovery and therapeutic options. Nat. Rev. Drug Discovery 2016, 15 (5), 327−347. Search in Google Scholar

3. Walls, A. C., Park, Y.-J., Tortorici, M. A., et al. Structure, Function, and Antigenicity of the SARSCoV-2 Spike Glycoprotein. Cell 2020, 181 (2), 281−292.e6. Search in Google Scholar

4. Xu, H., Zhong, L., Deng, J., et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020, 12 (1), 8. Search in Google Scholar

5. Jia, H. P., Look, D. C., Shi, L., et al. ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. J. Virol. 2005, 79 (23), 14614. Search in Google Scholar

6. Hou, Y. J., Okuda, K., Edwards, C. E, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020, 182, 429. Search in Google Scholar

7. Tay, M. Z., Poh, C. M., Renia, L., et al. The trinity of COVID- 19: immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20 (6), 363−374. Search in Google Scholar

8. Merrill, J. T., Erkan, D., Winakur, J., et al. A. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat. Rev. Rheumatol. 2020, 16 (10), 581−589. Search in Google Scholar

9. Whitsett, J. A., Alenghat, T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 2015, 16 (1), 27−35. Search in Google Scholar

10. Zhou, Z., Ren, L., Zhang, L., et al. Overly Exuberant Innate Immune Response to SARS-CoV-2 Infection. SSRN Electronic Journal 2020, DOI: 10.2139/ssrn.3551623. Search in Google Scholar

11. Zhou, Z., Ren, L., Zhang, L., et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe 2020, 27 (6), 883−890.e2. Search in Google Scholar

12. Jamilloux, Y., Henry, T., Belot, A., et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anticytokine interventions. Autoimmun. Rev. 2020, 19 (7). Search in Google Scholar

13. Li, G., Fan, Y., Lai, Y., et al. Coronavirus infections and immune responses. J. Med. Virol. 2020, 92 (4), 424−432. Search in Google Scholar

14. Seif, F., Khoshmirsafa, M., Aazami, H., et al. The role of JAKSTAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signaling 2017, 15 (1), 23. Search in Google Scholar

15. Channappanavar, R., Fehr, A. R., Vijay, R, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe 2016, 19 (2), 181−193. Search in Google Scholar

16. Juno, J. A., Tan, H.-X., Lee, W. S., et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat. Med. 2020, 26, 1428. Search in Google Scholar

17. Greenhalgh, T., Knight, M., A’Court, et al. Management of post-acute covid-19 in primary care. BMJ. 2020, 370, m3026. Search in Google Scholar

18. Herold, T., Jurinovic, V., Arnreich, C et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID- 19. J. Allergy Clin. Immunol. 2020, 146 (1), 128−136.e4. Search in Google Scholar

19. Barnes, B. J., Adrover, J. M., Baxter-Stoltzfus, A., et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020, 217 (6), No. e20200652. Search in Google Scholar

20. Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020, 20 (5), 269−270. Search in Google Scholar

21. Maucourant, C., Filipovic, I., Ponzetta, A., et al. Natural killer cell immunotypes related to COVID-19 disease severity. Science Immunology 2020, 5 (50), No. eabd6832 Search in Google Scholar

22. Gralinski, L. E., Sheahan, T. P., Morrison, T. E, et al. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio 2018, 9 (5), e01753-18. Search in Google Scholar

23. Zhou, Y., Fu, B., Zheng, X., et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review 2020, 7 (6), 998−1002. Search in Google Scholar

24. Onder, G., Rezza, G., Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323 (18), 1775−1776. Search in Google Scholar

25. Nikolich-Zugich, J., Knox, K. S., Rios, C. T., et al. SARSCoV- 2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience 2020, 42 (2), 505−514. Search in Google Scholar

26. Agrawal, A. Mechanisms and Implications of Age-Associated Impaired Innate Interferon Secretion by Dendritic Cells: A MiniReview. Gerontology 2013, 59 (5), 421−426. Search in Google Scholar

27. Chen, N., Zhou, M, Dong, X., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-513. Search in Google Scholar

28. Patel, S. K., Velkoska, E., Burrell, L. M. Emerging markers in cardiovascular disease: Where does angiotensin-converting enzyme 2 fit in? Clin. Exp. Pharmacol. Physiol. 2013, 40 (8), 551−559. Search in Google Scholar

29. Takahashi, T., Ellingson, M. K., Wong, P., et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, DOI: 10.1038/s41586-020-2700-3. Search in Google Scholar

30. Zhou, F., Yu, T., Du, R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020, 395 (10229), 1054−1062. ( Search in Google Scholar

31. Greenhalgh, T., Knight, M., A’Court, C., et al. Management of post-acute covid-19 in primary care. BMJ. 2020, 370, m3026. Search in Google Scholar

32. Carfì, A., Bernabei, R., Landi, et al. Persistent Symptoms in Patients after Acute COVID-19. JAMA 2020, 324 (6), 603−605. Search in Google Scholar

33. Liu, j., Yang, X., Wang, H., et al. The analysis of the longterm impact of SARS-CoV-2 on the cellular immune system in individuals recovering from COVID-19 reveals a profound NKT cell impairment. medRxiv 2020, DOI: 10.1101/2020.08.21.20179358. Search in Google Scholar

34. Moldofsky, H., Patcai, J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011, 11 (1), 37. Search in Google Scholar

35. Lee, K.-Y., Rhim, J.-W., Kang, J.-H. Early preemptive immunomodulators (corticosteroids) for severe pneumonia patients infected with SARS-CoV-2. Clin Exp Pediatr 2020, 63 (4), 117−118. Search in Google Scholar

36. Jeronimo, C. M. P., Farias, M. E. L., Val, F. F. A., et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With COVID-19 (Metcovid): A Randomised, Double-Blind, Phase IIb, Placebo-Controlled Trial. Clin. Infect. Dis. 2020. Search in Google Scholar

37. Fadel, R., Morrison, A. R., Vahia, A., et al. Early Short-Course Corticosteroids in Hospitalized Patients With COVID-19. Clin. Infect. Dis. 2020. Search in Google Scholar

38. Oxford, U. Low-cost dexamethasone reduces death by up to one third in hospitalized patients with severe respiratory complications of COVID-10; 2020. Search in Google Scholar

39. Group, T. R. C. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N. Engl. J. Med. 2020, DOI: 10.1056/NEJMoa2021436. Search in Google Scholar

40. Ogata, A., Tanaka, T. Tocilizumab for the treatment of rheumatoid arthritis and other systemic autoimmune diseases: current perspectives and future directions. Int. J. Rheumatol. 2012, 2012, 946048. Search in Google Scholar

41. Xu, X., Han, M., Li, T., et al. Effective treatment of severe COVID- 19 patients with tocilizumab. Proc. Natl. Acad. Sci. U. S. A. 2020; 117(20):10970-10975. doi:10.1073/pnas.2005615117 Search in Google Scholar

42. Gritti, G., Raimondi, F., Ripamonti, D., et al. IL-6 signalling pathway inactivation with siltuximab in patients with COVID- 19 respiratory failure: an observational cohort study. medRxiv 2020, DOI: 10.1101/2020.04.01.20048561. Search in Google Scholar

43. De Luca, G., Cavalli C, Campochiaro C, et al. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. The Lancet Rheumatology 2020, 2 (8), e465−e473. Search in Google Scholar

44. Temesgen, Z., Assi, M., Vergidis, P., et al. First Clinical Use of Lenzilumab to Neutralize GM-CSF in Patients with Severe COVID-19 Pneumonia. medRxiv 2020, DOI: 10.1101/2020.06.08.20125369. Search in Google Scholar

45. Cavalli, G.; Dinarello, C. A. Anakinra. Therapy for Non-cancer Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1157. Search in Google Scholar

46. Cauchois, R., Koubi, M., Delarbre, D., et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (32), 18951. Search in Google Scholar

47. Dolinger, M. T., Person, H., Smith, R, et al. Pediatric Crohn Disease and Multisystem Inflammatory Syndrome in Children (MIS-C) and COVID-19 Treated With Infliximab. J. Pediatr. Gastroenterol. Nutr. 2020, 71 (2), 153−155. Search in Google Scholar

48. Catanzaro, M., Fagiani, F., Racchi, M. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther 2020, 5, 84. Search in Google Scholar

49. Titanji, B. K., Farley, M. M., Mehta, A., et al. Use of Baricitinib in Patients with Moderate and Severe COVID-19. Clin. Infect. Dis. 2020, ciaa879. Search in Google Scholar

50. La Rosee, F., Bremer, H. C., Gehrke, I. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia 2020, 34 (7), 1805−1815. Search in Google Scholar

51. Dastan, F., Nadji, S. A., Saffaei, A., et al. Subcutaneous administration of interferon beta-1a for COVID-19: A non-controlled prospective trial. Int. Immunopharmacol. 2020, 85, 106688−106688. Search in Google Scholar

52. Walz, L., Cohen, A. J., Rebaza, A. P., et al. Kinase-Inhibitor and Type I Interferon Ability to Produce Favorable Clinical Outcomes in COVID-19 Patients: A Systematic Review and Meta-Analysis. medRxiv 2020, DOI: 10.1101/2020.08.10.20172189. Search in Google Scholar

53. Nimmerjahn, F., Ravetch, J. V. Anti-Inflammatory Actions of Intravenous Immunoglobulin. Annu. Rev. Immunol. 2008, 26 (1), 513−533. Search in Google Scholar

54. Cao, W., Liu, X., Bai, T., et al. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infectious Diseases 2020, 7 (3), ofaa102. Search in Google Scholar

55. Shao, Z., Feng, Y., Zhong, L., et al. Clinical efficacy of intravenous immunoglobulin therapy in critical patients with COVID-19: A multicenter retrospective cohort study. medRxiv 2020, DOI: 10.1101/2020.04.11.20061739 Search in Google Scholar

56. Li, L., Zhang, W., Hu, Y., et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA. 2020 Aug 4;324(5):460-470. doi: 10.1001/jama.2020.10044. Erratum in: JAMA. 2020 Aug 4;324(5):519. Search in Google Scholar

57. Joyner, M. J., Senefeld, J. W., Klassen, S. A., et al. Effect of Convalescent Plasma on Mortality among Hospitalized Patients with COVID-19: Initial Three-Month Experience. medRxiv 2020, DOI: 10.1101/2020.08.12.20169359. Search in Google Scholar

eISSN:
2719-5384
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other