Zacytuj

1. Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology. 2009;127(3):299-311.10.1111/j.1365-2567.2009.03054.x271209919538249Search in Google Scholar

2. Salisbury TB, Tomblin JK, Primerano DA, et al. Endogenous aryl hydrocarbon receptor promotes basal and inducible expression of tumor necrosis factor target genes in MCF-7 cancer cells. Biochem Pharmacol. 2014;91(3):390-399.10.1016/j.bcp.2014.06.015415796724971714Search in Google Scholar

3. Hernández-Ochoa I, Karman BN, Flaws JA. The role of the aryl hydrocarbon receptor in the female reproductive system. Biochem Pharmacol. 2009;77(4):547-559.10.1016/j.bcp.2008.09.037265780518977336Search in Google Scholar

4. Luecke-Johansson S, Gralla M, Rundqvist H, et al. A Molecular Mechanism To Switch the Aryl Hydrocarbon Receptor from a Transcription Factor to an E3 Ubiquitin Ligase. Mol Cell Biol. 2017;37(13):e00630-16.10.1128/MCB.00630-16547282728416634Search in Google Scholar

5. Murray IA, Perdew GH. Ligand activation of the Ah receptor contributes to gastrointestinal homeostasis. Curr Opin Toxicol. 2017;2:15-23.10.1016/j.cotox.2017.01.003560425728944314Search in Google Scholar

6. Busbee PB, Rouse M, Nagarkatti M, Nagarkatti PS. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev. 2013;71(6):353-369.10.1111/nure.12024407684323731446Search in Google Scholar

7. Badawy AA. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention. Egypt J Basic Clin Pharmacol. 2019;9:10.32527/2019/101415.10.32527/2019/101415652024331105983Search in Google Scholar

8. Anderson G, Maes M. Interactions of Tryptophan and Its Catabolites With Melatonin and the Alpha 7 Nicotinic Receptor in Central Nervous System and Psychiatric Disorders: Role of the Aryl Hydrocarbon Receptor and Direct Mitochondria Regulation. Int J Tryptophan Res. 2017;10:1178646917691738.10.1177/1178646917691738539832728469467Search in Google Scholar

9. Yamamoto J, Ihara K, Nakayama H, et al. Characteristic expression of aryl hydrocarbon receptor repressor gene in human tissues: organ-specific distribution and variable induction patterns in mononuclear cells. Life Sci. 2004;74(8):1039-1049.10.1016/j.lfs.2003.07.02214672759Search in Google Scholar

10. Soshilov AA, Denison MS. Ligand promiscuity of aryl hydro-carbon receptor agonists and antagonists revealed by site-directed mutagenesis. Mol Cell Biol. 2014;34(9):1707-1719.10.1128/MCB.01183-13399361024591650Search in Google Scholar

11. Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci. 2020;51(1):379-395.10.1111/ejn.14361Search in Google Scholar

12. Tchekalarova J, Angelova VT, Todorova N, Andreeva-Gateva P, Rangelov M. Evaluation of the anticonvulsant effect of novel melatonin derivatives in the intravenous pentylenetetrazol seizure test in mice. Eur J Pharmacol. 2019;863:172684.10.1016/j.ejphar.2019.172684Search in Google Scholar

13. Arsene AL, Mitrea N, Cristea A, et al. Experimental research on mice regarding the implication of melatonin in pain management. Farmacia 2009;57:223-8.Search in Google Scholar

14. Rowley NM, White HS. Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: Correlation with other seizure and epilepsy models. Epilepsy Res. 2010;92(2-3):163-169.10.1016/j.eplepsyres.2010.09.002Search in Google Scholar

15. Jilek JL, Tian Y, Yu AM. Effects of MicroRNA-34a on the Pharmacokinetics of Cytochrome P450 Probe Drugs in Mice. Drug Metab Dispos. 2017;45(5):512-522.10.1124/dmd.116.074344Search in Google Scholar

16. Koshal P, Kumar P. Effect of Liraglutide on Corneal Kindling Epilepsy Induced Depression and Cognitive Impairment in Mice. Neurochem Res. 2016;41(7):1741-1750.10.1007/s11064-016-1890-4Search in Google Scholar

17. Ying SW, Rusak B, Delagrange P, Mocaer E, Renard P, Guardiola-Lemaitre B. Melatonin analogues as agonists and antagonists in the circadian system and other brain areas. Eur J Pharmacol. 1996;296(1):33-42.10.1016/0014-2999(95)00684-2Search in Google Scholar

18. Mohammadi F, Shakiba S, Mehrzadi S, Afshari K, Rahimnia AH, Dehpour AR. Anticonvulsant effect of melatonin through ATP-sensitive channels in mice. Fundam Clin Pharmacol. 2020;34(1):148-155.10.1111/fcp.1249031197879Search in Google Scholar

19. Peled N, Shorer Z, Peled E, Pillar G. Melatonin effect on seizures in children with severe neurologic deficit disorders. Epilepsia. 2001;42(9):1208-1210.10.1046/j.1528-1157.2001.28100.x11580772Search in Google Scholar

20. Reddy DS, Chuang SH, Hunn D, Crepeau AZ, Maganti R. Neuroendocrine aspects of improving sleep in epilepsy. Epilepsy Res. 2018;147:32-41.10.1016/j.eplepsyres.2018.08.013619284530212766Search in Google Scholar

21. Manni R, De Icco R, Cremascoli R, et al. Circadian phase typing in idiopathic generalized epilepsy: Dim light melatonin onset and patterns of melatonin secretion-Semicurve findings in adult patients. Epilepsy Behav. 2016;61:132-137.10.1016/j.yebeh.2016.05.01927344501Search in Google Scholar

22. Roshan S, Puri V, Chaudhry N et al. Sleep abnormalities in juvenile myoclonic epilepsy-A sleep questionnaire and polysomnography based study. Seizure. 2017;50:194-201.10.1016/j.seizure.2017.06.02128704743Search in Google Scholar

23. Arsene AL, Mitrea N, Cristea A, et al. Experimental research on mice regarding the implication of melatonin in pain management. Farmacia 2009;57:223-8.Search in Google Scholar

24. Kuthati Y, Lin SH, Chen IJ, Wong CS. Melatonin and their analogs as a potential use in the management of Neuropathic pain. J Formos Med Assoc. 2019;118(8):1177-1186.10.1016/j.jfma.2018.09.01730316678Search in Google Scholar

25. Zhu C, Xu Y, Duan Y, et al. Exogenous melatonin in the treatment of pain: a systematic review and meta-analysis. Onco-target. 2017;8(59):100582-100592.10.18632/oncotarget.21504572504529246003Search in Google Scholar

26. Uhlén M, Fagerberg L, Hallström BM, et al. Tissue-based map of the human proteome. Science 2015 347(6220):1260419.10.1126/science.126041925613900Search in Google Scholar

27. Angelova VT, Rangelov M, Todorova N, et al. Discovery of novel indole-based aroylhydrazones as anticonvulsants: Pharmacophore-based design. Bioorg Chem. 2019;90:103028.10.1016/j.bioorg.2019.10302831220672Search in Google Scholar

28. Anderson G, Reiter RJ. Glioblastoma: Role of Mitochondria N-acetylserotonin/Melatonin Ratio in Mediating Effects of miR-451 and Aryl Hydrocarbon Receptor and in Coordinating Wider Biochemical Changes. International Journal of Tryptophan Research: IJTR. 2019; 12:1178646919855942.10.1177/1178646919855942658070831244524Search in Google Scholar

29. Anderson G, Maes M. Gut Dysbiosis Dysregulates Central and Systemic Homeostasis via Suboptimal Mitochondrial Function: Assessment, Treatment and Classification Implications [published online ahead of print, 2020 Jan 30]. Curr Top Med Chem. 2020;10.2174/15680266206662001 31094445.10.2174/156802662066620013109444532003689Search in Google Scholar

30. Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int J Mol Sci. 2016;17(12):2124.10.3390/ijms17122124518792427999288Search in Google Scholar

31. Lee HU, McPherson ZE, Tan B, Korecka A, Pettersson S. Host-microbiome interactions: the aryl hydrocarbon receptor and the central nervous system. J Mol Med (Berl). 2017;95(1):29-39.10.1007/s00109-016-1486-0522519627858116Search in Google Scholar

32. Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci. 2020;51(1):379-395.10.1111/ejn.1436130706546Search in Google Scholar

33. Bracey JM, Kurz JE, Low B, Churn SB. Prolonged seizure activity leads to increased Protein Kinase A activation in the rat pilocarpine model of status epilepticus. Brain Res. 2009;1283:167-176.10.1016/j.brainres.2009.05.066Search in Google Scholar

34. Yokoyama N, Mori N, Kumashiro H. Chemical kindling induced by cAMP and transfer to electrical kindling. Brain Res. 1989;492(1-2):158-162.10.1016/0006-8993(89)90898-6Search in Google Scholar

35. Richardson VM, Santostefano MJ, Birnbaum LS. Daily cycle of bHLH-PAS proteins, Ah receptor and Arnt, in multiple tissues of female Sprague-Dawley rats. Biochem Biophys Res Commun. 1998;252(1):225-231.10.1006/bbrc.1998.9634Search in Google Scholar

36. Shimba S, Watabe Y. Crosstalk between the AHR signaling pathway and circadian rhythm. Biochem Pharmacol. 2009;77(4):560-565.10.1016/j.bcp.2008.09.040Search in Google Scholar

37. Jaeger C, Tischkau SA. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction. Environ Health Insights. 2016;10:133-141.10.4137/EHI.S38343Search in Google Scholar

38. Jones MK, Weisenburger WP, Sipes IG, Russell DH. Circa-dian alterations in prolactin, corticosterone, and thyroid hormone levels and down-regulation of prolactin receptor activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 1987;87(2):337-350.10.1016/0041-008X(87)90295-XSearch in Google Scholar

39. Linden J, Pohjanvirta R, Rahko T, Tuomisto J. TCDD decreases rapidly and persistently serum melatonin concentration without morphologically affecting the pineal gland in TCDD-resistant Han/Wistar rats. Pharmacol Toxicol. 1991;69(6):427-432.10.1111/j.1600-0773.1991.tb01325.x1766918Search in Google Scholar

eISSN:
0324-1750
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other