Otwarty dostęp

Altered Gabab Receptor Thermoregulatory Function in Rats with Diet-Induced Obesity


Zacytuj

1. Bowery NG. GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol, 2006, 6(1), 37-43.10.1016/j.coph.2005.10.00216361115Search in Google Scholar

2. Nakamura K. Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol. 2011, 301(5), R1207-28.10.1152/ajpregu.00109.201121900642Search in Google Scholar

3. Nikolov RP, Yakimova KS. Effects of GABA-transaminase inhibitor Vigabatrin on thermoregulation in rats. Amino Acids, 2011, 40(5), 1441-5.10.1007/s00726-010-0754-520878340Search in Google Scholar

4. Yakimova K, Ovtcharov R. Central temperature effects of the transmitter amino acids. Acta physiologica et pharmacologica Bulgarica. 1989, 15(3), 50-4.Search in Google Scholar

5. Yakimova K, Sann H, Schmid HA, Pierau FK. Effects of GABA agonists and antagonists on temperature-sensitive neurones in the rat hypothalamus. The Journal of physiology, 1996, 494 (Pt 1), 217-30.10.1113/jphysiol.1996.sp02148611606258814617Search in Google Scholar

6. Patel SM, Ebenezer IS. The effects of intraperitoneal and intracerebroventricular administration of the GABAB receptor antagonist CGP 35348 on food intake in rats. European journal of pharmacology, 2004, 503(1-3), 89-93.10.1016/j.ejphar.2004.09.00215496301Search in Google Scholar

7. Patel SM, Ebenezer IS. The effects of acute multiple intraperitoneal injections of the GABAB receptor agonist baclofen on food intake in rats. European journal of pharmacology, 2008, 601(1-3), 106-10.10.1016/j.ejphar.2008.10.05919022241Search in Google Scholar

8. Corwin RL, Wojnicki FH. Baclofen, raclopride, and naltrexone differentially affect intake of fat and sucrose under limited access conditions. Behav Pharmacol, 2009, 20(5-6), 537-48.10.1097/FBP.0b013e328331316819724193Search in Google Scholar

9. Sato I, Arima H, Ozaki N, et al. Peripherally administered baclofen reduced food intake and body weight in db/db as well as diet-induced obese mice. FEBS letters. 2007, 581(25), 4857-64.10.1016/j.febslet.2007.09.011Search in Google Scholar

10. Sampey BP, Vanhoose AM, Winfield HM, et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity, 2011, 19(6), 1109-17.10.1038/oby.2011.18313019321331068Search in Google Scholar

11. Novelli EL, Diniz YS, Galhardi CM, et al. Anthropometrical parameters and markers of obesity in rats. Laboratory animals, 2007, 41(1), 111-9.10.1258/00236770777939951817234057Search in Google Scholar

12. Rosow CE, Miller JM, Poulsen-Burke J, et al. Opiates and thermoregulation in mice. II. Effects of opiate antagonists. J Pharmacol Exp Ther. 1982, 220(3), 464-7.Search in Google Scholar

13. Sandoval-Salazar C, Ramirez-Emiliano J, Trejo-Bahena A, et al. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats. Biol Res. 2016, 49, 15.10.1186/s40659-016-0075-6Search in Google Scholar

14. Corwin RL, Wojnicki FH, Zimmer DJ, et al. Binge-type eating disrupts dopaminergic and GABAergic signaling in the prefrontal cortex and ventral tegmental area. Obesity, 2016, 24(10), 2118-25.10.1002/oby.2162627558648Search in Google Scholar

15. Reagan ZK, Browning KN. Perinatal high fat diet dysregulates GABAergic signaling to vagal efferent motoneurons regulating gastric motility. The FASEB Journal, 2013, 27(1), 1157.9-1157.9.10.1096/fasebj.27.1_supplement.1157.9Search in Google Scholar

eISSN:
0324-1750
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other