Otwarty dostęp

Experimental Determination of Springback Characteristics in a Three-Point Bending Test of the Aluminium Alloy Sheet with Aluminium Cladding


Zacytuj

Himagireesh Ch, Ramji K, Durga Prasad KG, Hari Kiran V. Multi-criteria decision model for selection of a material suitable to lightning strike protection in aerospace applications. Materials Today Proc. 2022;59: 725-733. Search in Google Scholar

Polmear I. Light Alloy - From traditional Alloys to Nanocrystals. Butterworth-Heinemann: Oxford 2006. Search in Google Scholar

Davies G. Materials for Automobile Bodies. Butterworth-Heinemann: Oxford 2003. Search in Google Scholar

Atluri SN, Sampath SG, Tong P. Structural Integrity of Aging Airplanes. Springer Verlag: Berlin/Heidelberg 1991. Search in Google Scholar

Pantelakis SpG, Chamos AN, Setsika D. Tolerable corrosion damage on aircraft aluminium structures: Local cladding patterns. Theor. Appl. Fracture Mech. 2012;58:55-64. Search in Google Scholar

Zinonga T, Binga Z, Junb J, Zhiqianga L, Jianguob L. A study on the hot roll bonding of aluminium alloys. Procedia Manufacturing. 2020; 50:56-62. Search in Google Scholar

Kučera V, Vojtěch D. Influence of the Heat Treatment on Corrosion Behavior and Mechanical properties of the AA 7075 Alloy. Manufacturing Technology. 2017;17:747-752. Search in Google Scholar

Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A, et al. Recent development in aluminium alloys for the automotive industry. Compos Sci. Technol. 2000;280:37-49. Search in Google Scholar

May A, Belouchrani MA, Taharboucht S,Boudras A. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated. Procedia Engineering. 2010; 2:1795-1804. Search in Google Scholar

Sun S, Fang Y, Zhang L, Li C, Hu S. Effects of aging treatment and peripheral coarse grain on the exfoliation corrosion behaviour of 2024 aluminium alloy using SR-CT. J. Mater. Res. Technol. 2020;9:3219-3229. Search in Google Scholar

ASM Handbook, Volume 4. Heat Treating ASM Handbook Committee, p. 841-879. DOI: 10.1361/asmhba0001205 Search in Google Scholar

Sobotka J, Solfronk P, Kolnerova M, Korecek D. Influence of technological parameters on ageing of aluminium alloy AW-2024. Manufacturing Technology. 2018;18:1023-1028. Search in Google Scholar

Fallah Tafti M, Sedighi M, Hashemi R. Effects of natural ageing treatment on mechanical, microstructural and forming properties of Al 2024 aluminum alloy sheets. Iranian J. Mater. Sci. Engng. 2018;15:1-10. doi: 10.22068/ijmse.15.4.1 Search in Google Scholar

Kut S, Pasowicz G, Stachowicz F. The influence of natural aging of the AlCu4Mg1 aluminum sheet alloy on the constitutive parameters of selected models of flow stress. Adv. Sci. Technol. Res. J. 2022;16: 216-229. doi.org/10.12913/22998624/154792 Search in Google Scholar

Kut S, Pasowicz G, Stachowicz F. On the springback and load in three-point air bending of the AW-2024 aluminium alloy sheet with AW-1050A aluminium cladding. Materials. 2023;16:2945. doi. 10.3390/ma16082945. Search in Google Scholar

Sharma PK, Gautam V, Agrawal AK. Analytical and numerical prediction of Springback of SS/Al-alloy cladded sheet in V-Bending. J. Manuf. Sci. Eng. 2021;143(3):031011. Search in Google Scholar

https://doi.org/10.1115/1.4048953 Search in Google Scholar

Zhu YX, Liu YL, Yang H, Li HP. Development and application of the material constitutive model in springback prediction of cold bending. Materials Designe. 2012;42:245-258. Search in Google Scholar

Wu Z, Gong J, Chen Y, Wang J, Wei Y, Gao J. Springback prediction of dieless forming of AZM120 sheet metal based on constitutive model. Metals. 2020;10:780. doi:10.3390/met10060780. Search in Google Scholar

Vorkov V, Aerens R, Vandepitte D, Duflou JR. Springback prediction of high-strength steels in large radius air bending using finite element modeling approach. Procedia Eng. 2014;81:1005-1010. doi:10.1016/j.proeng.2014.10.132 Search in Google Scholar

Lin J, Hou Y, Min J, Tang H, Carsley JE, Stoughton TB. Effect of constitutive model on springback prediction of MP980 and AA6022-T4. Int. J. Material Forming. 2020;13:1-13. doi.org/10.1007/s12289-018-01468-x Search in Google Scholar

Sharma PK, Gautam V, Agrawal AK. Experimental and numerical investigations of springback and residual stresses in bending of a three-ply clad sheet. Proc IMechE Part L: J. Materials: Design Applications. 2021;235,2823-2838 https://doi.org/10.1177/14644207211037006 Search in Google Scholar

Trzepieciński T, Lemu HG. Improving prediction of springback in sheet metal forming using multilayer perceptron-based genetic algorithm. Materials. 2020;13:3129. doi.org/10.3390/ma13143129. Search in Google Scholar

Yilamua K, Hino R, Hamasaki H, Yoshida F. Air bending and spring-back of stainless steel clad aluminium sheet. J. Mater. Proc. Technol. 2010;210:272-278. doi.org/10.1016/j.jmatprotec.2009.09.010. Search in Google Scholar

AMS2770. Heat Treatment of Wrought Aluminum Alloy Parts. Rev. 2015-09. Search in Google Scholar