Zacytuj

Ångström AJ. Neue Methode, das Warmeleitungsvermogen der Korper zu Bestimmen. Annalen der Physic und Chemie. 1861;114:513-530. Search in Google Scholar

Ariaki N, Tang DW, Makino A, Hashimoto M, Sano T. Transient Characteristics of Thermal Conduction in Dispersed Composites. Int JThermophys. 1998;19(1):1239-1251. Search in Google Scholar

Belling JM, Unsworth J. Modified Ångström‘s method for measurement of thermal diffusivity of materials with low conductivity. Rev.Sci. Instrum. 1987;58(6):997-1002 Search in Google Scholar

Dagan G. Effective, equivalent and apparent properties of heterogeneous media. H. Aref and J.W. Philips (eds.), Mechanics for a New Millenium, Kluwer Academic Publishers, 2001; 473-486 Search in Google Scholar

Ebert HP, Braxmeier S, Reichenauer G, Hemberger F, Lied F, Wein-rich D, Fricke M. Intercomparison of Thermal Conductivity Measurements on a Nanoporous Organic Aerogel. Int. J. Thermophys. 2021;42(21):1-18. Search in Google Scholar

EuroCAE ED 112. Minimum operational performance specification for crash protected airborne recorder systems, Revision A September 1. 2013. Search in Google Scholar

Etex Industry. Promat Technical Data Sheet. Promalight®. 2022. Available from: www.promat-industry.com Search in Google Scholar

Goual MS, Bali A, Quéneudec M. Effective thermal conductivity of clayey aerated concrete in the dry state: experimental results and modeling. J. Phys. D, Applied Physics. 1999;32:3041-3046. Search in Google Scholar

Grimvall G. Thermophysical Properties of Materials. Amsterdam: Elsevier Science Publish-ers B.V.; 1986. p.347 Search in Google Scholar

Jakielaszek Z, Panas AJ, Nowakowski M, Klemba T, Fikus B. Evaluation of numerical modeling application for the crash test planning of the catastrophic Flight Data Recorder. J. Mar. Eng.Technol. 2017;16(4):319-325 Search in Google Scholar

Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S. Apparent and effective physical properties of heterogenous materials: Representativity of samples of two materials from food industry. Comput Methods Appl Mech Engi, 2006;195:3960 – 3982. Search in Google Scholar

Maglić KD, Cezairliyan A, Peletsky VE (Eds.).Compendium of Thermophysical Property Measurement Methods. Volume 1: Survey of Measurement Techniques. New York: Plenum Press. 1984. Search in Google Scholar

Maglić KD, Cezairliyan A, Peletsky VE. Compendium of Thermo-physical Property Measurement Methods. 1992 Vol. 2: Recommended measurement Techniques and Practices. New York: Plenum Press 1992, Search in Google Scholar

NO-16-A200. Wojskowe statki powietrzne, Pokładowe rejestratory katastroficzne, Wymagania i badania [Military aircraft, On-board catastrophic recorders, Requirements and tests] 2006. Search in Google Scholar

McNaughton JL, Mortimer CT. Differential Scanning Calorimetry. IRS. Physical Chemistry Series 2 Vol.10. London: Butterworths; Norwalk: reprinted by Perkin-Elmer Corp. 1975; 44. Search in Google Scholar

Ostoja-Starzewski M. Mechanics of Random Media. Warszawa: Military University of Technology 2017. Search in Google Scholar

Panas AJ. B-spline approximation of DSC data of specific heat of NiAl and NiCr alloys. Arch Thermod. 2003;24:47–65. Search in Google Scholar

Panas AJ, Panas D. DSC investigation of binary iron-nickel alloys. High Temp. – High Press 2009;38(1):63-78. Search in Google Scholar

Panas AJ. Comparative-Complementary Investigations of Thermo-physical Properties – High Thermal Resolution Procedures In Practice. Zmeskal, O. et al. (eds). Thermophysics. Brno University of Technology. Faculty of Chemistry. 2010; 218-235. Search in Google Scholar

Panas AJ. IR Support of Thermophysical Property Investigation. Medical and Advanced Technology Materials Study. Prakash, R.V. (Ed.). Infrared Thermography. InTech (Rijeka). 2012;65-90. Search in Google Scholar

Panas AJ, Fikus B, Płatek P, Kunce I, Dyjak S, Michalska-Domanska M, Witek K, Kuziora P, Olejarczyk A, Jaroszewicz L, Polański M. Pressurised-cell test stand with oscillating heating for investigation heat transfer phenomena in metal hydride beds. Int. J. Hydrogen Energy. 2016;41:16974-16983. Search in Google Scholar

Panas AJ, Błaszczyk J, Dudziński A, Figur K, Foltyńska A, Krupińska A, Nowakowski M. Badania wpływu temperatury na zmiany właściwości cieplnych i mechanicznych osnowy lotniczego konstrukcyjnego materiału kompozytowego. Mechanika w lotnictwie ML-XVII. tom II. Warszawa: PTMTS 2016. Search in Google Scholar

Pietrak K, Wiśniewski ST. A review of models for effective thermal conductivity of composite materials. J Pow Technol. 2015;95(1): 14-24. Search in Google Scholar

Reif F. Fizyka statystyczna. Warszawa: PWN. 1971; 394. Search in Google Scholar

Wendlandt WW. Thermal Analysis. 3rd ed. New York: John Willey & Sons. 1986; 815. Search in Google Scholar

Wiśniewski S, Wiśniewski T. Wymiana ciepła. Warszawa:WNT. 2000; 445. Search in Google Scholar

Friedrich K, Fakirov S, Zhang Z. Czigány T. Discontinuous basalt fibre-reinforced hybrid composite. Polymer composites: from nano- to macro scale. 2005;309-328. Search in Google Scholar

Szczepaniak R, Kozun G, Przybylek P, Komorek A, Krzyzak A, Woroniak G. The effect of the application of a powder additive of a phase change material on the ablative properties of a hybrid composite. Compos Struct. 2021;256:113041. https://doi.org/10.1016/j.compstruct.2020.113041 Search in Google Scholar

Krzyżak A, Kucharczyk W, Gąska J, Szczepaniak R. Ablative test of composites with epoxy resin and expanded perlite. Compos Struct. 2018;202:978-987. https://doi.org/10.1016/j.compstruct.2018.05.018 Search in Google Scholar

Przybyłek P, Komorek A, Szczepaniak R. The Influence of Metal Reinforcement upon the Ablative Properties of Multi-Layered Composites.Adv SciTechnol Res J. 2023;17(2). Search in Google Scholar