Otwarty dostęp

The Study of Temperature-Dependent Magnetic Properties Variation in CoCr2O4 Nanoparticles with (y = 0.8) and Without Coating Concentration of Non-Magnetic (SiO2)y


Zacytuj

Hosseini SA, Alvarez-Galvan MC, Fierro JLG, Niaei A, Salari D. MCr2O4 (M= Co, Cu, and Zn) nanospinels for 2-propanol combustion: correlation of structural properties with catalytic performance and stability. Ceramics International. 2013;39(8):9253–61. Search in Google Scholar

Knyazev AV, Mączka M, Bulanov EN, Ptak M, Belopolskaya SS. High-temperature thermal and X-ray diffraction studies, and room-temperature spectroscopic investigation of some inorganic pigments. Dyes and Pigments. 2011;91(3):286–93. Search in Google Scholar

Avila AG, Barrera EC, Huerta LA, Muhl S. Cobalt oxide films for solar selective surfaces, obtained by spray pyrolisis. Solar Energy Materials and Solar Cells. 2004;82(1–2):269–78. Search in Google Scholar

BaZr0.2Ce0.8−xYxO3−δ solid oxide fuel cell electrolyte synthesized by sol–gel combined with composition-exchange method - ScienceDirect [Internet]. [cited 2020 Jun 24]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S036031991400384X Search in Google Scholar

Effect of stoichiometry on (La0.6Sr0.4)xCo0.2Fe0.8O3 cathode evolution in solid oxide fuel cells - ScienceDirect [Internet]. [cited 2020 Jun 24]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378775314008076 Search in Google Scholar

Fino D. Diesel emission control: Catalytic filters for particulate removal. Science and Technology of Advanced Materials [Internet]. 2007 Jan 1 [cited 2020 Jun 24];8(1–2):93–100. Available from: https://doi.org/10.1016/j.stam.2006.11.012 Search in Google Scholar

Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature [Internet]. 2006 Aug [cited 2020 Jun 24]; 442(7104):759–65. https://www.nature.com/articles/nature05023 Search in Google Scholar

Mancic L, Marinkovic Z, Vulic P, Moral C, Milosevic O. Morphology, Structure and Nonstoichiometry of ZnCr2O4 Nanophased Powder. Sensors [Internet]. 2003 Oct [cited 2020 Jun 24];3(10):415–23. Available from: https://www.mdpi.com/1424-8220/3/10/415 Search in Google Scholar

Anthony R. Solid state chemistry and its applications. John Wiley & Sons; 1990. Search in Google Scholar

Choudhary P, Varshney D. Structural, vibrational and dielectric behavior of Co1-xMxCr2O4 (M = Zn, Mg, Cu and x = 0.0, 0.5) spinel chromites. Journal of Alloys and Compounds [Internet]. 2017 Nov 25 [cited 2020 Jun 24];725:415–24. Available from: http://www.sciencedirect.com/science/article/pii/S0925838817325380 Search in Google Scholar

Wang LG, Zhu CM, Chen L, Yuan SL. Exchange bias effect in CoCr2O4/NiO system prepared by two-step method. Solid State Communications [Internet]. 2017 Feb 1 [cited 2020 Jun 24];251: 39–42. Available from: http://www.sciencedirect.com/science/article/pii/S0038109816303490 Search in Google Scholar

Gingasu D, Mindru I, Culita DC, Patron L, Calderon-Moreno JM, Osiceanu P, et al. Structural, magnetic and catalytic properties of cobalt chromite obtained through precursor method. Materials Research Bulletin [Internet]. 2015 Feb 1 [cited 2020 Jun 25];62:52–64. Available from: http://www.sciencedirect.com/science/article/pii/S0025540814006904 Search in Google Scholar

Lawes G, Melot B, Page K, Ederer C, Hayward MA, Proffen Th, et al. Dielectric anomalies and spiral magnetic order in ${\mathrm {CoCr}}_{2}{\mathrm{O}}_{4}$. Phys Rev B [Internet]. 2006 Jul 17 [cited 2020 Jun 24];74(2):024413. Available from: https://link.aps.org/doi/10.1103/PhysRevB.74.024413 Search in Google Scholar

Menyuk N, Dwight K, Wold A. Ferrimagnetic spiral configurations in cobalt chromite. J Phys France [Internet]. 1964 May 1 [cited 2020 Jun 24];25(5):528–36. Available from: http://dx.doi.org/10.1051/jphys:01964002505052801 Search in Google Scholar

Manikandan A, Sridhar R, Arul Antony S, Ramakrishna S. A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures. Journal of Molecular Structure [Internet]. 2014 Nov 5 [cited 2020 Jun];1076:188–200. http://www.sciencedirect.com/science/article/pii/S002228601400790X Search in Google Scholar

Rath C, Mohanty P. Magnetic Phase Transitions in Cobalt Chromite Nanoparticles. J Supercond Nov Magn [Internet]. 2011 Jan 1 [cited 2020 Jun 24];24(1):629–33. Available from: https://doi.org/10.1007/s10948-010-0958-7 Search in Google Scholar

Galivarapu JK, Kumar D, Banerjee A, Sathe V, Aquilanti G, Rath C. Effect of size reduction on cation distribution and magnetic transitions in CoCr2O4 multiferroic: EXAFS, magnetic and diffused neutron scattering measurements. RSC Adv [Internet]. 2016 Jul 1 [cited 2020 Jun 24];6(68):63809–19. Available from : https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra10189e Search in Google Scholar

Huang DJ, Okamoto J, Huang SW, Mou CY. Magnetic Transitions of Multiferroic Frustrated Magnets Revealed by Resonant Soft X-ray Magnetic Scattering. J Phys Soc Jpn [Internet]. 2010 Jan 12 [cited 2020 Jun 24];79(1):011009. Available from: https://journals.jps.jp/doi/abs/10.1143/JPSJ.79.011009 Search in Google Scholar

Chen CC, Herhold AB, Johnson CS, Alivisatos AP. Size Dependence of Structural Metastability in Semiconductor Nanocrystals. Science [Internet]. 1997 Apr 18 [cited 2020 Jun 24];276(5311):398–401. Available from: https://science.sciencemag.org/content/276/5311/398 Search in Google Scholar

20.Tsoukatos A, Wan H, Hadjipanayis GC, Papaefthymiou V, Kostikas A, Simopoulos A. Origin of coercivity in (Fe,Co)- based granular films. Journal of Applied Physics [Internet]. 1993 May 15 [cited 2020 Jun 24];73(10):6967–9. Available from: https://aip.scitation.org/doi/abs/10.1063/1.352399 Search in Google Scholar

21.Hee Kim E, Sook Lee H, Kook Kwak B, Kim BK. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. Journal of Magnetism and Magnetic Materials [Internet]. 2005 Mar 1 [cited 2020 Jun 24];289:328–30. Available from: http://www.sciencedirect.com/science/article/pii/S0304885304013186 Search in Google Scholar

Nadeem K, Ali L, Gul I, Rizwan S, Mumtaz M. Effect of silica coating on the structural, dielectric, and magnetic properties of maghemite nanoparticles. Journal of Non-Crystalline Solids [Internet]. 2014 Nov 15 [cited 2020 Jun 24];404:72–7. Available from: http://www.sciencedirect.com/science/article/pii/S0022309314003494 Search in Google Scholar

Abarra EN, Gill P, Min Zheng, Zhou JN, Acharya BR, Choe G. Preconditioning, write width, and recording properties of Co-Cr-Pt-O perpendicular media with various underlayer designs. IEEE Transactions on Magnetics. 2005 Feb;41(2):581–6. Search in Google Scholar

Wu KH, Chang YC, Wang GP. Preparation of NiZn ferrite/SiO2 nano-composite powders by sol–gel auto-combustion method. Journal of Magnetism and Magnetic Materials [Internet]. 2004 Feb 1 [cited 2020 Jun 24];269(2):150–5. Available from:http://www.sciencedirect.com/science/article/pii/S0304885303005857 Search in Google Scholar

Chaudhuri A, Mandal M, Mandal K. Preparation and study of NiFe2O4/SiO2 core–shell nanocomposites. Journal of Alloys and Compounds [Internet]. 2009 Nov 13 [cited 2020 Jun 24];487(1):698–702. Available from: http://www.sciencedirect.com/science/article/pii/S0925838809016089 Search in Google Scholar

Zhang S, Dong D, Sui Y, Liu Z, Wang H, Qian Z, et al. Preparation of core shell particles consisting of cobalt ferrite and silica by sol–gel process. Journal of Alloys and Compounds [Internet]. 2006 May 18 [cited 2020 Jun 24];415(1):257–60. Available from: http://www.sciencedirect.com/science/article/pii/S0925838805012661 Search in Google Scholar

Kamran M, Ullah A, Mehmood Y, Nadeem K, Krenn H. Role of SiO2 coating in multiferroic CoCr2O4 nanoparticles. AIP Advances [Internet]. 2017 Feb 1 [cited 2020 Jun 24];7(2):025011. Available from: https://aip.scitation.org/doi/full/10.1063/1.4973732 Search in Google Scholar

Nadeem K, Krenn H, Shahid M, Letofsky-Papst I. Influence of SiO2 matrix and annealing time on properties of Ni-ferrite nanoparticles. Solid State Sciences [Internet]. 2013 May 1 [cited 2020 Jun 24];19:27–31. Available from: http://www.sciencedirect.com/science/article/pii/S129325581300068X Search in Google Scholar

Zi Z, Sun Y, Zhu X, Yang Z, Dai J, Song W. Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. Journal of Magnetism and Magnetic Materials [Internet]. 2009 May 1 [cited 2020 Jun 24];321(9):1251–5. Available from: http://www.sciencedirect.com/science/article/pii/S0304885308011578 Search in Google Scholar

Gopalan EV, Joy PA, Al-Omari IA, Kumar DS, Yoshida Y, Anantha-raman MR. On the structural, magnetic and electrical properties of sol–gel derived nanosized cobalt ferrite. Journal of Alloys and Compounds [Internet]. 2009 Oct 19 [cited 2020 Jun 24];485(1):711–7. Available from: http://www.sciencedirect.com/science/article/pii/S0925838809012092 Search in Google Scholar

Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of $\mathrm{Ni}\text{\ensuremath{-}}\mathrm{Mn}\text{\ensuremath{-}}\mathrm{In}$ alloys. Phys Rev B [Internet]. 2006 May 15 [cited 2020 Jun 24];73(17):174413. Available from: https://link.aps.org/doi/10.1103/PhysRevB.73.174413 Search in Google Scholar

Kahn O. The magnetic turnabout. Nature [Internet]. 1999 May [cited 2020 Jun 24];399(6731):21–2. Available from: https://www.nature.com/articles/19862 Search in Google Scholar

Ohkoshi S ichi, Yorozu S, Sato O, Iyoda T, Fujishima A, Hashimoto K. Photoinduced magnetic pole inversion in a ferro–ferrimagnet: (Fe0.40IIMn0.60II)1.5CrIII(CN)6. Appl Phys Lett [Internet]. 1997 Feb 24 [cited 2020 Jun 24];70(8):1040–2. Available from: https://aip.scitation.org/doi/abs/10.1063/1.118475 Search in Google Scholar

Plocek J, Holec P, Kubickova S, Pacakova B, Matulkova I, Mantlikova A, et al. Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix. International Journal of Chemical and Molecular Engineering [Internet]. 2014 Oct 5 [cited 2020 Jun 24];8(11):1219–28. Available from: http://publications.waset.org/9999702/stabilization-of-transition-metal-chromite-nanoparticles-in-silica-matrix Search in Google Scholar

Plumier R. Reinvestigation of Magnetic Structures of CoCr2O4 and MnCr2O4 Obtained by Neutron Diffraction. Journal of Applied Physics [Internet]. 1968 Feb 1 [cited 2020 Jun 24];39(2):635–6. Available from: https://aip.scitation.org/doi/abs/10.1063/1.2163559 Search in Google Scholar

Mufti N, Nugroho AA, Blake GR, Palstra TTM. Magnetodielectric coupling in frustrated spin systems: the spinels MCr2O4(M = Mn, Co and Ni). J Phys: Condens Matter [Internet]. 2010 Feb [cited 2020 Jun 24];22(7):075902. Available from: https://doi.org/10.1088%2F0953-8984%2F22%2F7%2F075902 Search in Google Scholar

Tang ZX, Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC. Tang et al. reply. Phys Rev Lett [Internet]. 1992 May 18 [cited 2020 Jun 24];68(20):3114–3114. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.68.3114 Search in Google Scholar

Binder K. Statistical mechanics of finite three-dimensional Ising models. Physica [Internet]. 1972 Dec 15 [cited 2020 Jun 24]; 62(4):508–26. Available from: http://www.sciencedirect.com/science/article/pii/0031891472902376 Search in Google Scholar

Tartaj P, González-Carreño T, Serna CJ. Magnetic Behavior of γ-Fe2O3 Nanocrystals Dispersed in Colloidal Silica Particles. J Phys Chem B [Internet]. 2003 Jan 1 [cited 2020 Jun 24];107(1):20–4. Available from: https://doi.org/10.1021/jp0260898 Search in Google Scholar

Grinbom G, Duveau D, Gershinsky G, Monconduit L, Zitoun D. Silicon/Hollow γ-Fe2O3 Nanoparticles as Efficient Anodes for Li-Ion Batteries. Chem Mater [Internet]. 2015 Apr 14 [cited 2020 Jun 24];27(7):2703–10. Available from: https://doi.org/10.1021/acs.chemmater.5b00730 Search in Google Scholar

Zeb F, Nadeem K, Shah SKA, Kamran M, Gul IH, Ali L. Surface spins disorder in uncoated and SiO2 coated maghemite nanoparticles. Journal of Magnetism and Magnetic Materials [Internet]. 2017 May 1 [cited 2020 Jun 24];429:270–5. Available from: http://www.sciencedirect.com/science/article/pii/S0304885316313762 Search in Google Scholar

Caizer C, Stefanescu M. Magnetic characterization of nanocrystalline Ni Zn ferrite powder prepared by the glyoxylate precursor method. J Phys D: Appl Phys [Internet]. 2002 Nov [cited 2020 Jun 24];35(23):3035–40. Available from: https://doi.org/10.1088%2F0022-3727%2F35%2F23%2F301 Search in Google Scholar

Aslibeiki B, Kameli P. Magnetic properties of MnFe2O4 nano-aggregates dispersed in paraffin wax. Journal of Magnetism and Magnetic Materials [Internet]. 2015 Jul 1 [cited 2020 Jun 25];385:308–12. Available from: http://www.sciencedirect.com/science/article/pii/S0304885315002449 Search in Google Scholar

Xu ST, Ma YQ, Zheng GH, Dai ZX. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles. Nanoscale [Internet]. 2015 Apr 2 [cited 2020 Jun 25];7(15):6520–6. Available from: https://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr00582e Search in Google Scholar

Obaidat IM, Issa B, Albiss BA, Haik Y. Temperature Dependence of Saturation Magnetization and Coercivity in Mn0.5Zn0.5Gd0.02 Fe1.98O4Ferrite Nanoparticles. IOP Conf Ser: Mater Sci Eng [Internet]. 2015 Oct [cited 2020 Jun 25];92:012012. Available from: https://doi.org/10.1088%2F1757-899x%2F92%2F1%2F012012 Search in Google Scholar

Kneller EF, Luborsky FE. Particle Size Dependence of Coercivity and Remanence of Single-Domain Particles. Journal of Applied Physics [Internet]. 1963 Mar 1 [cited 2020 Jun 25];34(3):656–8. Available from: https://aip.scitation.org/doi/abs/10.1063/1.1729324 Search in Google Scholar