Otwarty dostęp

Influence of the Manipulator Configuration on Vibration Effects


Zacytuj

Bauer J, Friedmann M, Hemker T, Pischan M, Reinl C, Abele E, Stryk OV. Analysis of Industrial Robot Structure and Milling Process Interaction for Path Manipulation, in: Denkena, B., Hollmann, F. (Eds.), Process Machine Interactions, Lecture Notes in Production Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013; 245–263. https://doi.org/10.1007/978-3-642-32448-2_11 Search in Google Scholar

Ji W, Wang L. Industrial robotic machining: a review. Int. J. Adv. Manuf. Technol. 2019; 103, 1239–1255. https://doi.org/10.1007/s00170-019-03403-z Search in Google Scholar

Iglesias I, Sebastián MA, Ares JE. Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering. 2015;132, 911–917. https://doi.org/10.1016/j.proeng.2015.12.577 Search in Google Scholar

Burghardt A, Szybicki D, Kurc K, Muszyńska M. Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Teh. Vjesn. 2022; 29(1), 15-22. https://doi.org/10.17559/TV-20190710141137 Search in Google Scholar

Gierlak P. Adaptive Position/Force Control of a Robotic Manipulator in Contact with a Flexible and Uncertain Environment. Robotics. 2021; 10, 32. https://doi.org/10.3390/robotics10010032 Search in Google Scholar

Bisu C, Cherif M, Gerard A. K’nevez JY. Dynamic Behavior Analysis for a Six Axis Industrial Machining Robot. 2011; AMR 423, 65–76. https://doi.org/10.4028/www.scientific.net/AMR.423.65 Search in Google Scholar

Huynh HN, Assadi H, Rivière-Lorphèvre E, Verlinden O, Ahmadi K. Modelling the dynamics of industrial robots for milling operations. Robot. Comput-Integr. Manuf. 2020; 61, 101852. https://doi.org/10.1016/j.rcim.2019.101852 Search in Google Scholar

Nguyen V, Johnson J, Melkote S. Active vibration suppression in robotic milling using optimal control. Int. J. Mach. Tools Manuf. 2020; 152, 103541. https://doi.org/10.1016/j.ijmachtools.2020.103541 Search in Google Scholar

Busch M, Schnoes F, Elsharkawy A, Zaeh MF. Methodology for model-based uncertainty quantification of the vibrational properties of machining robots. Robot. Comput-Integr. Manuf. 2022; 73, 102243. https://doi.org/10.1016/j.rcim.2021.102243 Search in Google Scholar

Tunc LT, Gonul B. Effect of quasi-static motion on the dynamics and stability of robotic milling. 2021; CIRP Annals 70, 305–308. https://doi.org/10.1016/j.cirp.2021.04.077 Search in Google Scholar

İIman MM, Yavuz Ş, Karagülle H, Uysal A. Hybrid vibration control of an industrial CFRP composite robot-manipulator system based on reduced order model. Simulation Modelling Practice and Theory, 2022; 115: 102456. https://doi.org/10.1016/j.simpat.2021.102456 Search in Google Scholar

İIman MM, Yavuz Ş, Yildirim TP. Generalized input preshaping vibration control approach for multi-link flexible manipulators using-machine intelligence. Mechatronics, 2022; 82: 102735. doi.org/10.1016/j.mechatronics.2021.102735 Search in Google Scholar

Dwivedy SK, Eberhard P. Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. 2006; Theory 41, 749–777. https://doi.org/10.1016/j.mechmachtheory.2006.01.014 Search in Google Scholar

Siciliano B, Wit CC, Bastin G. Theory of Robot Control. Springer Science & Business Media. 2012. Search in Google Scholar

Goldsmith PB, Francis BA, Goldenberg AA. Stability of hybrid position/force control applied to manipulators with flexible joints. Int. J. Robot. Autom. 1999; 14(4), 146-160. Search in Google Scholar

Vukobratovic M, Potkonjak V, Matijevic V. Dynamics of Robots with Contact Tasks. Springer Netherlands, Dordrecht. 2003. https://doi.org/10.1007/978-94-017-0397-0 Search in Google Scholar

Zhu Q, Mao Y, Xiong R, Wu J. Adaptive Torque and Position Control for a Legged Robot Based on a Series Elastic Actuator. Int. J. Adv. Robot. Syst. 2016; 13, 26. https://doi.org/10.5772/62204 Search in Google Scholar

Do T.-T, Vu V.-H, Liu Z. Linearization of dynamic equations for vibration and modal analysis of flexible joint manipulators. Mech. Mach. 2022; Theory 167, 104516. https://doi.org/10.1016/j.mechmachtheory.2021.104516 Search in Google Scholar

Endo T, Kawasaki H. Bending moment-based force control of flexible arm under gravity. Mech. Mach. 2014; Theory 79, 217–229. https://doi.org/10.1016/j.mechmachthory.2014.04.013 Search in Google Scholar

Cheong J, Youm Y. System mode approach for analysis of horizontal vibration of 3-D two-link flexible manipulators. J. Sound Vib. 2003; 268, 49–70. https://doi.org/10.1016/S0022-460X(02)01474-8 Search in Google Scholar

Thomsen DK, Søe-Knudsen R, Balling O, Zhang X. Vibration control of industrial robot arms by multi-mode time-varying input shaping. Mech. Mach. 2021; Theory 155, 104072. https://doi.org/10.1016/j.mechmachtheory.2020.104072 Search in Google Scholar

Yavuz Ş, İIman M. M. Modified reduced-order modeling of a flexible robot-manipulator and model-associative vibration control implementation. Extreme Mechanics Letters. 2020; 37, 100723. Search in Google Scholar

Khorasani K. Adaptive control of flexible joint robots. Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 1991; vol.3, 2127-2134. https://doi:10.1109/ROBOT.1991.131942 Search in Google Scholar

Mejri S, Gagnol V, Le TP, Sabourin L, Ray P. Dynamic characterization of machining robot and stability analysis. Int J Adv Manuf Technol 82, 2016; 351–359. https://doi.org/10.1007/s00170-015-7336-3 Search in Google Scholar