Zacytuj

Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J. Nanobiotechnology. 2022;20(392):1–23. https://doi.org/10.1186/s12951-022-01599-z Search in Google Scholar

Xu K, Han Y, Huang Y, Wei P, Yin J, Jiang J. The application of 3D bioprinting in urological diseases. Mater. Today Bio. 2022;16 (100388):1–17. doi: 10.1016/j.mtbio.2022.100388 Search in Google Scholar

Verla W, Oosterlinck W, Spinoit AF, Waterloos M. A Comprehensive Review Emphasizing Anatomy, Etiology, Diagnosis, and Treatment of Male Urethral Stricture Disease. BioMed Res. Int. 2019;2019: 9046430:1–20. doi: 10.1155/2019/9046430 Search in Google Scholar

Lazzeri M, Sansalone S, Guazzoni G, Barbagli G. Incidence, Causes, and Complications of Urethral Stricture Disease. Eur. Urol. Suppl. 2016;15(1):2–6. 10.1016/j.eursup.2015.10.002 Search in Google Scholar

Yao HJ, Wei ZW, Wan X, Tao YC, Zhang DC, Wang Z, Xie MK. Three new experimental models of anterior urethral stricture in rabbits. Transl. Androl. Urol. 2022;11(6):761–772. doi: 10.21037/tau-22-104 Search in Google Scholar

Klekiel T, Mackiewicz A, Kaczmarek-Pawelska A, Skonieczna J, Kurowiak J, Piasecki T, Noszczyk-Nowak A, Będziński R. Novel design of sodium alginate based absorbable stent for the use in urethral stricture disease. J. Mater. Res. Technol. 2020;9(4):9004–9015. https://doi.org/10.1016/j.jmrt.2020.06.047 Search in Google Scholar

Kurowiak J, Mackiewicz A, Klekiel T, Będzński R. Evaluation of Selected Properties of Sodium Alginate-Based Hydrogel Material-Mechanical Strength, µDIC Analysis and Degradation. Materials. 2022;15(3):1–15. https://doi.org/10.3390/ma15031225 Search in Google Scholar

Mackiewicz A, Klekiel T, Kurowiak J, Piasecki T, Będziński R. Determination of Stent Load Conditions in New Zealand White Rabbit Urethra. J. Funct. Biomater. 2020;11(4):1–9. https://doi.org/10.3390/jfb11040070 Search in Google Scholar

Farzamfar S, Elia E, Chabaud S, Naji M, Bolduc S. Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int. J. Mol. Sci. 2022;23(18):1–37. https://doi.org/10.3390/ijms231810519 Search in Google Scholar

Basikn LS, Constantinescu SC, Howard PS, Mcaninch JW, Ewalt DH, Duckett JW, Snyder HM, Macarak EJ. Biomechanical characterization and quantitation of the collagenous components of urethral stricture tissue. J. Urol. 1993;150:642–647. 10.1016/s0022-5347(17)35572-6 Search in Google Scholar

Goel A, Goel A, Jain A, Singh BP. Management of panurethral strictures. Indian J. Urol. 2011;27(3):378–384. 10.4103/0970-1591.85443 Search in Google Scholar

Mundy AR, Andrich DE. Urethral strictures. BJU International. 2010;107(1):6–26. doi: 10.1111/j.1464-410X.2010.09800.x. Search in Google Scholar

Engel O, Soave A, Rink M, Fisch M. Reconstructive Management with Urethroplasty. European Association of Urology. 2016;15(1):13–16. 10.1016/j.eursup.2015.10.004 Search in Google Scholar

Pudełko P. Rekonstrukcja cewki moczowej - uretroplastyka/Reconstruction of the urethroplasty. Przegląd Urologiczny. 2016;96. Search in Google Scholar

Pastorek D, Culenova M, Csobonyeiova M, Skuciova V, Danisovic L, Ziaran S. Tissue Engineering of the Urethra: From Bench to Bedside. Biomedicines. 2021:9(12):1–12. 10.3390/biomedicines9121917 Search in Google Scholar

Cheng L, Li S, Wan Z, Huang B, Lin J. A brief review on anterior urethral strictures, Asian J Uro. 2018;5(2):88–93. 10.1016/j.ajur.2017.12.005 Search in Google Scholar

Kurowiak J, Kaczmarek-Pawelska A, Mackiewicz A, Będziński R. Analysis of the Degradation Process of Alginate-Based Hydrogels in Artificial Urine for Use as a Bioresorbable Material in the Treatment of Urethral Injuries. Processes. 2020;8(3):1–11. https://doi.org/10.3390/pr8030304 Search in Google Scholar

Cunnane EM, Davis N, Cunnane CV, Lorentz KL, Ryan AJ, Hess J, Weinbaum JS, Walsh MT, O’Brien FJ, Vorp DA. Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials. 2021;269(120651):1–31. 10.1016/j.biomaterials.2021.120651 Search in Google Scholar

Li G, Li Y, Lan P, Li J, Zhao Z, He X, Zhang J, Hu H. Biodegradable weft-knitted intestinal stents: Fabrication and physical changes investigation in vitro degradation. J. Biomed. Mater. Res. Part A. 2014;102(4):982–990. https://doi.org/10.1002/jbm.a.34759 Search in Google Scholar

Loskot J, Jezbera D, Zmrhalová ZO, Nalezinková M, Alferi D, Lelkes A, Voda P, Andrýs R, Myslivcová-Fučiková A, Hosszŭ T, Bezrouk A. A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on Raman Spectroscopy Validation. Polymers. 2022;14(5):1–19. https://doi.org/10.3390/polym14050938 Search in Google Scholar

Zilberman M, Eberhart RC. Drug-Eluting Bioresorbable Stents for Various Applications. Annu. Rev. Biomed. Eng. 2006;8:153–180. https://doi.org/10.1146/annurev.bioeng.8.013106.151418 Search in Google Scholar

Zhang W, Kanwal F, Fayyaz M, Rehman UR, Wan X. Efficacy of Biodegradable Polydioxanone and Polylactic Acid Braided Biodegradable Biliary Stents for the Management of Benign Biliary Strictures. Turk J Gastroenterol. 2021;32(8):651–660. 10.5152/tjg.2021.201174 Search in Google Scholar

Kwon C, Son JS, Kim KS, Moon JP, Park S, Jeon J, Kim G, Choi SH, Ko KH, Jeong S, Lee DH. Mechanical properties and degradation process of biliary self-expandable biodegradable stents. Dig Endosc. 2021;33(7):1158–1169. doi: 10.1111/den.13916 Search in Google Scholar

Bezrouk A, Hosszu T, Hromadko L, Olmrova-Zmrhalova Z, Kopecek M, Smutny M, Krulichova IS, Macak JM, Kremlacek J. Mechanical properties of a biodegradable self-expandable polydioxanone mono-filament stent: In vitro force relaxation and its clinical relevance. PLOS ONE. 2020;15(7):1–16. https://doi.org/10.1371/journal.pone.0235842 Search in Google Scholar

Adolfsson KH, Sjőberg I, Hőglund OV, Wattle O, Hakkarainen M. In Vivo Versus In Vitro Degradation of a 3D Printed Resorbable Device for Ligation of Vascular Tissue in Horses. Macromol. Biosci. 2021;21(10):1–12. https://doi.org/10.1002/mabi.202100164 Search in Google Scholar

Saska S, Pilatti L, Santos de Sousa Silva E, Nagasawa MA, Câmara D, Lizier N, Inger E, Dyszkiewicz-Konwińska M, Kempisty B, Tunchel S, Blay A, Shibil JA. Polydioxanone-Based Membranes for Bone Regeneration. Polymers. 2021;13(11):1–16. https://doi.org/10.3390/polym13111685 Search in Google Scholar

Fathi P, Capron G, Tripathi I, Misra S, Ostadhossein F, Selmic L, Rowitz B, Pan D. Computed Tomography-Guided Additive Manufacturing of Personalized Absorbable Gastrointestinal Stents for Intestinal Fistulae and Perforations. Biomaterials. 2020,228(119542):1–36. doi: 10.1016/j.biomaterials.2019.119542 Search in Google Scholar

Park JH, Song HY, Shin JH, Kim JH, Jun EJ, Cho YC, Kim SH, Park J. Polydioxanone Biodegradable Stent Placement in a Canine Urethral Model: Analysis of Inflammatory Reaction and Biodegradation. J Vasc Interv Radiol. 2014;25(8):1257–1264. 10.1016/j.jvir.2014.03.023 Search in Google Scholar

Stehlik L, Hytych V, Letackova J, Kubena P, Vasakova M. Biodegradable polydioxanone stents in the treatment of adult patients with tracheal narrowing. BMC Pulm. Med. 2015;15(164):1–8 10.1186/s12890-015-0160-6 Search in Google Scholar

Zamiri P, Kuang Y, Sharma U, Ng TF, Busold RH, Rago AP, Core LA, Palasis M. The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries. Biomaterials. 2010;31(31):7847–7855. 10.1016/j.biomaterials.2010.06.057 Search in Google Scholar

Kurowiak J, Kaczmarek-Pawelska A, Mackiewicz A, Baldy-Chudzik K, Mazurek-Popczyk J, Zaręba Ł, Klekiel T, Będziński R. Changes in the Mechanical Properties of Alginate-Gelatin Hydrogels with the Addition of Pygeum africanum with Potential Application in Urology. Int. J. Mol. Sci. 2022;23(18):1–16. https://doi.org/10.3390/ijms231810324 Search in Google Scholar

Chutipongtanate S, Thongboonnkerd V. Systematic comparisons of artificial urine formulas for in vitro cellular study, Anal. Biochem. 2010;402(1):110–112. 10.1016/j.ab.2010.03.031 Search in Google Scholar

Gil-Castell O, Badia JD, Bou J, Ribes-Greus A. Performance of Polyester-Based Electrospun Scaffolds under In Vitro Hydrolytic Conditions: From Short-Term to Long-Term Applications. Nano-materials. 2019;9(5):1–19. https://doi.org/10.3390/nano9050786 Search in Google Scholar

Zhao F, Sun J, Xue W, Wang F, King MW, Yu C, Jiao Y, Sun K, Wang L. Development of a polycaprolactone/poly(p-dioxanone) bioresorbable stent with mechanically self-reinforced structure for congenital heart disease treatment, Bioact. Mater. 2021;6(9):2969–2982. https://doi.org/10.1016/j.bioactmat.2021.02.017 Search in Google Scholar

Tian Y, Zhang J, Cheng J, Wu G, Zhang Y, Ni Z, Zhao G. A poly(L-lactic acid) monofilament with high mechanical properties for application in biodegradable biliary stents. J. Appl. Polym. Sci. 2020;138(2):1–8. https://doi.org/10.1002/app.49656 Search in Google Scholar

Conderman C, Kinzinger M, Manuel C, Protsenko D, Wong BJF. Mechanical analysis of cartilage graft reinforced with PDS plate. Laryngoscope. 2013;123(2):339–343. doi: 10.1002/lary.23571 Search in Google Scholar

Loskot J, Jezbera D, Bezrouk A, Doležal R, Andrýs R, Francová V, Miškář D, Myslivcová-Fučiková A. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation. Materials. 2021;14(18):1–16. https://doi.org/10.3390/ma1 Search in Google Scholar