Otwarty dostęp

Neural Control of a Robotic Manipulator in Contact with a Flexible and Uncertain Environment

   | 15 lip 2023

Zacytuj

Iglesias I, Sebastián MA, Ares JE. Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Eng. 2015;132:911–7. Search in Google Scholar

Tian F, Lv C, Li Z, Liu G. Modeling and control of robotic automatic polishing for curved surfaces. CIRP J Manuf Sci Technol. 2016;14:55–64. Search in Google Scholar

Denkena B, Bergmann B, Lepper T. Design and optimization of a machining robot. Procedia Manuf. 2017;14:89–96. Search in Google Scholar

Gracia L, Solanes JE, Muñoz-Benavent P, Valls Miro J, Perez-Vidal C, Tornero J. Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback. Mechatronics. 2018;52:102–18. Search in Google Scholar

Vukobratovič M, Ekalo Y, Rodič A. How to Apply Hybrid Position/Force Control to Robots Interacting with Dynamic Environment. W: Bianchi G, Guinot JC, Rzymkowski C, Eds. Romansy 14 [Internet]. Vienna: Springer Vienna; 2002 [cited 13 december 2022]. 249–58. Available from: http://link.springer.com/10.1007/978-3-7091-2552-6_27 Search in Google Scholar

Gierlak P. Position/Force Control of Manipulator in Contact with Flexible Environment. Acta Mech Autom. 2019;13(1):16–22. Search in Google Scholar

Gierlak P. Adaptive Position/Force Control of a Robotic Manipulator in Contact with a Flexible and Uncertain Environment. Robotics. 12 2021;10(1):32. Search in Google Scholar

Application Manual. Force Control for Machining. Zürich: ABB Robotics; 2011. Search in Google Scholar

Burghardt A, Szybicki D, Kurc K, Muszyñska M, Mucha J. Experimental Study of Inconel 718 Surface Treatment by Edge Robotic Deburring with Force Control. Strength Mater. 2017;49(4):594–604. Search in Google Scholar

Gierlak P, Szuster M. Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot Auton Syst. 2017;95:80–101. Search in Google Scholar

Duan J, Gan Y, Chen M, Dai X. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot Auton Syst. 2018;102:54–65. Search in Google Scholar

Ravandi KA, Khanmirza E, Daneshjou K. Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Appl Soft Comput. 2018;70:864–74. Search in Google Scholar

Guo K, Zhang Y, Sun J. Towards stable milling: Principle and application of active contact robotic milling. Int J Mach Tools Manuf. 2022;182:103952. Search in Google Scholar

Wang W, Guo Q, Yang Z, Jiang Y, Xu J. A state-of-the-art review on robotic milling of complex parts with high efficiency and precision. Robot Comput-Integr Manuf. 2023;79:102436. Search in Google Scholar

Chen SC, Tung PC. Trajectory planning for automated robotic deburring on an unknown contour. Int J Mach Tools Manuf. 2000;40(7):957–78. Search in Google Scholar

Robotic Grinding Process of Turboprop Engine Compressor Blades with Active Selection of Contact Force. Teh Vjesn - Tech Gaz [Internet]. 2022 Feb 15 [cited 2022 Dec 7];29(1). Available from: https://hrcak.srce.hr/269299. Search in Google Scholar

Wang Z, Zou L, Luo G, Lv C, Huang Y. A novel selected force controlling method for improving robotic grinding accuracy of complex curved blade. ISA Trans. 2022;129:642–58. Search in Google Scholar

Ke X, Yu Y, Li K, Wang T, Zhong B, Wang Z, et al. Review on robot-assisted polishing: Status and future trends. Robot Comput-Integr Manuf. 2023;80:102482. Search in Google Scholar

Gierlak P. Hybrid Position/Force Control of the SCORBOT-ER 4pc Manipulator with Neural Compensation of Nonlinearities. In: Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM, editors. Artificial Intelligence and Soft Computing [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012 [cited 2020 Nov 21]. p. 433–41. (Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, et al., editors. Lecture Notes in Computer Science; vol. 7268). Available from: http://link.springer.com/10.1007/978-3-642-29350-4_52. Search in Google Scholar

Gierlak P. Hybrid Position/Force Control in Robotised Machining. Solid State Phenom. 2013;210:192–9. Search in Google Scholar

Dwivedy SK, Eberhard P. Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory. 2006;41(7):749–77. Search in Google Scholar

Do TT, Vu VH, Liu Z. Linearization of dynamic equations for vibration and modal analysis of flexible joint manipulators. Mech Mach Theory. 2022;167:104516. Search in Google Scholar

Cheng X, Zhang Y, Liu H, Wollherr D, Buss M. Adaptive neural backstepping control for flexible-joint robot manipulator with bounded torque inputs. Neurocomputing. 2021;458:70–86. Search in Google Scholar

Endo T, Kawasaki H. Bending moment-based force control of flexible arm under gravity. Mech Mach Theory. 2014;79:217–29. Search in Google Scholar

Thomsen DK, Søe-Knudsen R, Balling O, Zhang X. Vibration control of industrial robot arms by multi-mode time-varying input shaping. Mech Mach Theory. 2021;155:104072. Search in Google Scholar

Cheong J, Youm Y. System mode approach for analysis of horizontal vibration of 3-D two-link flexible manipulators. J Sound Vib. 2003;268(1):49–70. Search in Google Scholar

Lewis FL, Jagannathan S, Yeşildirek A. Neural network control of robot manipulators and nonlinear systems. London: Taylor & Francis; 1999. 442 p. (The Taylor & Francis systems and control book series). Search in Google Scholar

Wei B. Adaptive Control Design and Stability Analysis of Robotic Manipulators. Actuators. 2018;7(4):89. Search in Google Scholar

Gupta P, Sinha NK. Intelligent control of robotic manipulators: experimental study using neural networks. Mechatronics. 2000;10(1–2):289–305. Search in Google Scholar

Yin X, Pan L, Cai S. Robust adaptive fuzzy sliding mode trajectory tracking control for serial robotic manipulators. Robot Comput-Integr Manuf. 2021;72:101884. Search in Google Scholar

Pham DT, Fahmy AA. NEURO-FUZZY MODELLING AND CONTROL OF ROBOT MANIPULATORS FOR TRAJECTORY TRACKING. IFAC Proc Vol. 2005;38(1):170–5. Search in Google Scholar

Szuster M, Gierlak P. Approximate Dynamic Programming in Tracking Control of a Robotic Manipulator. Int J Adv Robot Syst. 2016;13(1):16. Search in Google Scholar

Kumar N, Rani M. Neural network-based hybrid force/position control of constrained reconfigurable manipulators. Neurocomputing. 2021;420:1–14. Search in Google Scholar

Yang Z, Peng J, Liu Y. Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer. Neurocomputing. 2019;331:263–80. Search in Google Scholar

de Campos Souza PV. Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature. Appl Soft Comput. 2020;92:106275. Search in Google Scholar

Refoufi S, Benmahammed K. Control of a manipulator robot by neuro-fuzzy subsets form approach control optimized by the genetic algorithms. ISA Trans. 2018;77:133–45. Search in Google Scholar

Vijay M, Jena D. PSO based neuro fuzzy sliding mode control for a robot manipulator. J Electr Syst Inf Technol. 2017;4(1):243–56. Search in Google Scholar

Fanaei A, Farrokhi M. ADAPTIVE NEURO-FUZZY CONTROLLER FOR HYBRID POSITION/FORCE CONTROL OF ROBOTIC MANIPULATORS. IFAC Proc Vol. 2005;38(1):127–32. Search in Google Scholar

Wang Z, Zou L, Su X, Luo G, Li R, Huang Y. Hybrid force/position control in workspace of robotic manipulator in uncertain environments based on adaptive fuzzy control. Robot Auton Syst. 2021 Nov;145:103870. Search in Google Scholar

Garcia-Rodriguez R, Parra-Vega V. Normal and tangent force neuro-fuzzy control of a soft-tip robot with unknown kinematics. Eng Appl Artif Intell. 2017 Oct;65:43–50. Search in Google Scholar

Pao YH, Park GH, Sobajic DJ. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing. 1994;6(2):163–80. Search in Google Scholar

Kumar N, Panwar V, Sukavanam N, Sharma SP, Borm JH. Neural network based hybrid force/position control for robot manipulators. Int J Precis Eng Manuf. 2011;12(3):419–26. Search in Google Scholar

Lewis FL, Liu K, Yesildirek A. Neural net robot controller with guaranteed tracking performance. IEEE Trans Neural Netw. 1995;6(3):703–15. Search in Google Scholar

Obal P, Gierlak P. EGM Toolbox—Interface for Controlling ABB Robots in Simulink. Sensors. 2021;21(22):7463. Search in Google Scholar