Otwarty dostęp

Numerical Investigation of Production-Related Characteristics Regarding their Influence on the Fatigue Strength of Additively Manufactured Components


Zacytuj

Pelleg J. Additive and Traditionally Manufactured Components: A Comparative Analysis of Mechanical Properties. Amsterdam (NL): Elsevier; 2020. Search in Google Scholar

Kruth J-P, Badrossamay M, Yasa E, Deckers J, Thijs L, Van Humbeeck J, Zhao W. Part and material properties in selective laser melting of metals. Proceedings of the 16th International Symposium on Electromachining (ISEM XVI), 2010, 3-14. Search in Google Scholar

Radaj D, Vormwald M. Ermüdungsfestigkeit. 3rd ed. Berlin (DE): Springer-Verlag, 2007. Search in Google Scholar

Mercelis P, Kruth J‐P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006; 12(5): 254-265. Search in Google Scholar

Hatami S, Ma T, Vuoristo T, Bertilsson J, Lyckfeldt O. Fatigue Strength of 316 L Stainless Steel Manufactured by Selective Laser Melting. J. of Materi Eng and Perform 2020; 29(5): 3183-3194. Search in Google Scholar

Leuders S, Lieneke T, Lammers S, Tröster T, Niendorf T. On the fatigue properties of metals manufactured by selective laser melting – The role of ductility. J. Mater. Res. 2014; 29(17): 1911-1919. Search in Google Scholar

Keller N. Verzugsminimierung bei selektiven Laserschmelzverfahren durch Multi-Skalen-Simulation [dissertation]. Bremen: University of Bremen, 2017 [cited 6 July 2017]. Available from: http://nbn-resolving.de/urn:nbn:de:gbv:46-00105808-15 Search in Google Scholar

Zhang Y, Jung Y-G, Zhang J. Multiscale Modeling of Additively Manufactured Metals: Application to Laser Powder Bed Fusion Process. Amsterdam (NL): Elsevier; 2020. Search in Google Scholar

Zhang B, Li Y, Bai Q. Defect Formation Mechanisms in Selective Laser Melting. Chin. J. Mech. Eng. 2017; 30(3): 515-527. Search in Google Scholar

Nadot Y, Nadot-Martin C, Kan WH, Boufadene S, Foley M, Cairney J, Proust G, Ridosz L. Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography. Addit. Manuf. 2020; 32(3): 100899. Search in Google Scholar

Mertens A, Reginster S, Paydas H, Contrepois Q, Dormal T, Lemaire O, Lecomte-Beckers J. Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: Influence of out-of-equilibrium microstructures. Powder Metall. 2014; 57(3): 184-189. Search in Google Scholar

Wang D, Liu Y, Yang Y, Xiao D. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyp. J. 2016; 22(4): 706-716. Search in Google Scholar

Vrancken B. Study of Residual Stresses in Selective Laser Melting [dissertation]. Leuven (BE): KU Leuven, 2016 [cited 10 May 2017]. Available from: https://lirias.kuleuven.be/1942277 Search in Google Scholar

Weibull W. A statistical theory of the strength of materials. Ingeniörsvetenskapsakademiens handlingar 151. Stockholm (SE): Generalstabens Litografiska Anstalts Förlag, 1939. Search in Google Scholar

Weibull W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951; 18(3): 293-297. Search in Google Scholar

Bomas H, Mayr P, Schleicher M. Calculation method for the fatigue limit of parts of case hardened steels. Materials Science and Engineering: A 1997; 234: 393-396. Search in Google Scholar

Macherauch E, Kloos K-H. Bewertung von Eigenspannungen. Härterei-Technische Mitteilungen, Beiheft Eigenspannungen und Lastspannungen, Moderne Ermittlung – Ergebnisse – Bewertung 1982; 175-194. Search in Google Scholar

Jablonski F. Rechnerische Ermittlung von Dauerfestigkeitskennwerten an einsatzgehärteten Proben aus 16 MnCrS 5 unter Berücksichtigung von Mittel- und Eigenspannungen [dissertation]. University of Bremen. Aachen (DE): Shaker Verlag, 2001. Search in Google Scholar

FKM Forschungskuratorium Maschinenbau e.V. FKM-Richtlinie; Rechnerischer Festigkeitsnachweis für Maschinenbauteile. 6th ed. Frankfurt am Main (DE): VDMA-Verlag, 2012. Search in Google Scholar

Gläßner C, Blinn B, Burkhart M, Klein M, Beck T, Aurich JC. Comparison of 316L test specimens manufactured by Selective Laser Melting, Laser Deposition Welding and Continuous Casting. In: Schmitt RH, Schuh G, editors. 7. WGP-Jahreskongress. 2017 5-6 Oct; Aachen, Germany. Aachen (DE): Apprimus Verlag, 2017; 45-52. Search in Google Scholar

Abaqus Welding Interface 2017, User Manual, AWI Version AWI_2017-5. Dassault Systems Simulia Corp., 2018. Search in Google Scholar

Abaqus/CAE 2017. Dassault Systemes Simulia Corp., 2016. Search in Google Scholar

Zeißig M, Jablonski F. Comparison of different approaches to model fatigue for additively manufactured specimens considering production related characteristics. Procedia Struct. Integr. 2022; 38(5): 60-69. Search in Google Scholar