Otwarty dostęp

Analytical Approach for Vehicle Body Structures Behaviour Under Crash at Aspects of Overloading and Crumple Zone Length


Zacytuj

1. Łabęcka M., Żaba C., Lorkiewicz-Muszyńska D., Świderski P., Mularski A., Kołowski J. Fatal injuries of organs situated in the neck caused by fastened seat belts. Arch. Med. Sąd. Kryminol. 2011;LXI: 170-175 (in Polish). Search in Google Scholar

2. Dubois D., Zellmer H., Markiewicz E. Experimental and numerical analysis of seat belt bunching phenomenon. International Journal of Impact Engineering. 2009; 36: 763-774. https://doi.org/10.1016/j.ijimpeng.2008.11.00610.1016/j.ijimpeng.2008.11.006 Search in Google Scholar

3. Reeda M.P., Ebert S. M., Sherwood Ch.P., Klinich K.D., Manary M.A. Evaluation of the static belt fit provided by belt-positioning booster seats. Accident Analysis and Prevention. 2009;41: 598-607. https://doi.org/10.1016/j.aap.2009.02.00910.1016/j.aap.2009.02.00919393812 Search in Google Scholar

4. Houten R.V., Reagan I. J., Hilton B.W. Increasing seat belt use: Two field experiments to test engineering-based behavioral interventions. Transportation Research, Part F. 2014;23:133-146. https://doi.org/10.1016/j.trf.2013.12.01810.1016/j.trf.2013.12.018 Search in Google Scholar

5. Joszko K., Wolański W., Gzik M., Żuchowski A. Experimental and modelling investigation of effective protection the passengers in the rear seats during car accident. Modelowanie Inżynierskie. 2015;25 (56): 48-57 (in Polish). Search in Google Scholar

6. Kang H.-S., Cho H.-Y., Lee S.-K., Shon J.-H. Development of an index for the sound and haptic quality of a seat belt. Applied Acoustics. 2015;99: 145-154. https://doi.org/10.1016/j.apacoust.2015.06.00610.1016/j.apacoust.2015.06.006 Search in Google Scholar

7. Li Z., Yu Q., Zhao X., Yu M., Shi P., Yan C. Crashworthiness and lightweight optimization to applied multiple materials and foam-filled front end structure of auto-body. Advances in Mechanical Engineering. 2017;9(8): 1-21. https://doi.org/10.1177/168781401770280610.1177/1687814017702806 Search in Google Scholar

8. Liang C., Wang C., J., Nguyen V., B., English M., Mynors D. (2017). Experimental and numerical study on crashworthiness of cold-formed dimpled steel columns. Thin-Walled Structures. 2017;112: 83-91. https://doi.org/10.1016/j.tws.2016.12.02010.1016/j.tws.2016.12.020 Search in Google Scholar

9. Kotełko M. Load capacity and failure mechanisms of thin-walled structures, WNT Warszawa, Poland (in Polish); 2017. Search in Google Scholar

10. Kent R.W., Purtsezov S.V., Pilkey W.D. Limiting performance analysis of a seat belt system with slack. International Journal of Impact Engineering. 2007;34: 1382-1395. https://doi.org/10.1016/j.ijimpeng.2006.07.00210.1016/j.ijimpeng.2006.07.002 Search in Google Scholar

11. Sahraeia E., Digges K., Marzougui D., Roddis K. High strength steels, stiffness of vehicle front-end structure, and risk of injury to rear seat occupants. Accident Analysis and Prevention. 2014; 66: 43-54. https://doi.org/10.1016/j.aap.2014.01.00410.1016/j.aap.2014.01.00424509321 Search in Google Scholar

12. Saunders J.W., Molino L.N., Kuppa S., McKoy F.L., Performance of seating systems in a FMVSS no. 301 rear impact crash test. Computer Systems Management, Inc. USA, Paper Number 248. Search in Google Scholar

13. Sugimoto T., Kadotani Y., Ohmura S. The offset crash test – a comparative analysis of test methods. Honda R&D Co., Ltd. Japan, Paper Number 98-S l-0-08, 1998. Search in Google Scholar

14. Witteman, W. J. Improved vehicle crashworthiness design by control of the energy absorption for different collision situations. Technische Universiteit Eindhoven, 1999. https://doi.org/10.6100/IR518429 Search in Google Scholar

15. Jawad, Saad A.W. Compatibility study in frontal collisions – mass and stiffness ratio. ACME Department, University of Hertfordshire, United Kingdom, Paper Number 98-Sl-O-14; 1998. Search in Google Scholar

16. Sadeghipour E. A New Approach to Assess and Optimize the Frontal Crash Compatibility of Vehicle Structures with Focus on the European Fleet of Passenger Car. PhD thesis, Technical University of Munich; 2017. Search in Google Scholar

17. Barbat S., Li X., Prasad P. Vehicle to vehicle front to side crash analysis using a CAE based methodology. Passive Safety Research and Advanced Engineering, Ford Motor Company, United States, Paper Number 07-0347; 2007 Search in Google Scholar

18. Subramaniam K., Mukul Verma M., Rajesh Nagappala R., Ronald Tedesco R., Louis Carlin L. Evaluation of stiffness matching concepts for vehicle safety improvement. General Motors Corporation, USA, Paper Number 07-0112. Search in Google Scholar

19. Żuchowski A. The use of energy methods at the calculation of vehicle impact velocity. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2015;68(2): 85-111. Search in Google Scholar

20. Leibowitz B. Method for Computing Motor Vehicle Crash Energy Based on Detailed Crush Data and Stiffness Values. PhD thesis. Johns Hopkins University, USA; 2014. Search in Google Scholar

21. Neades J.G.J. Developments in Road Vehicle Crush Analysis for Forensic Collision Investigation. PhD thesis. De Montfort University; 2011. Search in Google Scholar

22. Khattab A. Abd El-R. Investigation of an adaptable crash energy management system to enhance vehicle crashworthiness. PhD thesis. Concordia University Montreal, Quebec, Canada; 2010. Search in Google Scholar

23. McCoy M.L., Lankarani H.M. Determination of the crush stiffness coefficients of a typical aftermarket frontal protective guard used in light trucks and vans with comparisons between guard stiffness and frontal vehicle crush coefficients. Proc. IMechE Vol. 220 Part D: J. Automobile Engineering. 2006;220(8): 1073-1084. https://doi.org/10.1243/09544070D1900310.1243/09544070D19003 Search in Google Scholar

24. Chen W. Crashworthiness Optimization of Ultralight Metal Structures. PhD thesis. Massachusetts Institute of Technology; 2001. Search in Google Scholar

25. Hollowell W.T., Gabler H. C., Stucki S.L., Summers S., Hackney J.R. Updated review of potential test procedures for FMVSS no. 208 NHTSA 1999. Search in Google Scholar

26. Brell E. Simplified models of vehicle impact for injury mitigation. PhD thesis. School of Urban Development. Queensland University of Technology; 2005. Search in Google Scholar

27. Lukoševičius V., Keršys R., Keršys A., Makaras R., Jablonskytė J. (2020). Three and four mass models for vehicle front crumple zone. Transport Problems. 2020;15(3). doi: 10.21307/tp-2020-035.10.21307/tp-2020-035 Search in Google Scholar

28. Pahlavani M., Marzbanrad J. Crashworthiness study of a full vehicle-lumped model using parameters optimization. International Journal of Crashworthiness, 2015;20(6): 573-591. http://dx.doi.org/10.1080/13588265.2015.106891010.1080/13588265.2015.1068910 Search in Google Scholar

29. Munyazikwiye B.B., Karimi H.R., Robbersmyr K.G. Optimization of Vehicle-to-Vehicle Frontal Crash Model Based on Measured Data Using Genetic Algorithm. IEEE Accesss. Digital Object Identifier. 2017;5: 3131-3138. doi: 10.1109/ACCESS.2017.267135710.1109/ACCESS.2017.2671357 Search in Google Scholar

30. Wiacek Ch., Nagabhushana V., Rockwell T., Summers S., Zhao L., Collins L.A. Evaluation of frontal crash stiffness measures from the U.S. new car assessment program. Paper Number 15-0257; 2015. Search in Google Scholar

31. Kim S., Cho H. A study on the stiffness change of a passenger car’s front frame body before and after a collision accident. International Journal of Mechanical Engineering and Robotics Research. 2021;10(5): 270-275. doi: 10.18178/ijmerr.10.5.270-27510.18178/ijmerr.10.5.270-275 Search in Google Scholar

32. Prochowski L., Ziubiński M., Pusty T. Experimental and analytic determining of the characteristics of deformation and side stiffness of a motor car body based on results of side-impact crash tests. International Automotive Conference (KONMOT2018). IOP Conf. Series: Materials Science and Engineering 421 (2018) 032025. doi:10.1088/1757-899X/421/3/03202510.1088/1757-899X/421/3/032025 Search in Google Scholar

33. Obst M., Kurpisz D., Paczos P. The experimental and analytical investigations of tension phenomenon of thin-walled cold formed channel beams subjected to four-point bending. Thin Walled Structures. 2016; 106: 179-186. https://doi.org/10.1016/j.tws.2016.05.00210.1016/j.tws.2016.05.002 Search in Google Scholar

34. Obst M., Rodak M., Paczos P. Limit load of cold formed thin-walled nonstandard channel beams. Journal of Theoretical and Applied Mechanics. 2016;54(4): 1369-1377. doi: 10.15632/jtam-pl.54.4.136910.15632/jtam-pl.54.4.1369 Search in Google Scholar

35. Mitchell R.J., Bambach M.R., Toson B. Injury risk for matched front and rear seat car passengers by injury severity and crash type: An exploratory study. Accident Analysis and Prevention. 2015;82: 171-179. https://doi.org/10.1016/j.aap.2015.05.02310.1016/j.aap.2015.05.02326087473 Search in Google Scholar

36. Bunketorp O.B., Elisson L.K. Cervical status after neck sprains in frontal and rear-end car impacts injury. Int. J. Care Injured. 2012; 43: 423-430. https://doi.org/10.1016/j.injury.2011.05.02010.1016/j.injury.2011.05.02021683356 Search in Google Scholar

37. Szeszycki A. Project of the collision energy absorber for the Formula Student vehicle, Engineering Thesis Poznan University of Technology (in Polish); 2020. Search in Google Scholar

38. Matlock D.K., Speer J.G., de Moor E. Recent AHSS developments for automotive applications: processing, microstructures, and properties. Addressing Key Technology Gaps in Implementing Advanced High-Strength Steels for Automotive Light Weighting February 9-10, 2012, USCAR Offices, Southfield, MI. Search in Google Scholar

39. Chatterjee D. Behind the development of advanced high strength steel (AHSS) including stainless steel for automotive and structural applications - an overview. Materials Science and Metallurgy Engineering, 2017; 4(1): 1-15. doi: 10.12691/msme-4-1-1 Search in Google Scholar