Otwarty dostęp

Second Law Analysis of MHD Forced Convective Nanoliquid Flow Through a Two-Dimensional Channel


Zacytuj

1. Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. European Journal of Mechanics-B/Fluids. 2015; 49(A):89-99.10.1016/j.euromechflu.2014.08.004 Search in Google Scholar

2. Sheikholeslami M, Ashorynejad H, Rana P. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. Journal of Molecular Liquids. 2016; 214:86-95.10.1016/j.molliq.2015.11.052 Search in Google Scholar

3. Mishra P, Tiwari A, Chhabra R. Effect of orientation on forced convection heat transfer from a heated cone in Bingham plastic fluids. International Communications in Heat and Mass Transfer. 2018; 93:34-40.10.1016/j.icheatmasstransfer.2018.02.018 Search in Google Scholar

4. Kim SK. Forced convection heat transfer for the fully-developed laminar flow of the cross fluid between parallel plates. Journal of Non-Newtonian Fluid Mechanics. 2020; 276:104226-1042231.10.1016/j.jnnfm.2019.104226 Search in Google Scholar

5. Peyghambarzadeh S, Sarafraz MM, Vaeli N, Ameri E, Vatani A, Jamialahmadi M. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Annals of Nuclear Energy. 2013; 53:401-410.10.1016/j.anucene.2012.07.037 Search in Google Scholar

6. Arasteh H, Mashayekhi R, Goodarzi M, Motaharpour SH, Dahari M, Toghraie D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. Journal of Thermal Analysis and Calorimetry. 2019; 138(2):1461-1476.10.1007/s10973-019-08168-x Search in Google Scholar

7. Farooq U, Waqas H, Khan MI, Khan SU, Chu Y-M, Kadry S. Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source. Alexandria Engineering Journal. 2021; 60(3):3073-3086.10.1016/j.aej.2021.01.050 Search in Google Scholar

8. Xiong P-Y, Hamid A, Chu Y-M, Khan MI, Gowda R, Kumar RN, et al. Dynamics of multiple solutions of Darcy–Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point. The European Physical Journal Plus. 2021; 136(3):1-22. Search in Google Scholar

9. Santra AK, Sen S, Chakraborty N. Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. International journal of thermal sciences. 2009; 48(2):391-400.10.1016/j.ijthermalsci.2008.10.004 Search in Google Scholar

10. Heidary H, Kermani M. Effect of nano-particles on forced convection in sinusoidal-wall channel. International Communications in Heat and Mass Transfer. 2010; 37(10):1520-1527.10.1016/j.icheatmasstransfer.2010.08.018 Search in Google Scholar

11. Minakov A, Lobasov A, Guzei D, Pryazhnikov M, Rudyak VY. The experimental and theoretical study of laminar forced convection of nanofluids in the round channel. Applied Thermal Engineering. 2015; 88:140-148.10.1016/j.applthermaleng.2014.11.041 Search in Google Scholar

12. Ma Y, Mohebbi R, Rashidi M, Yang Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Physics of Fluids. 2018; 30(3):032001.10.1063/1.5022060 Search in Google Scholar

13. Ramin M, Erfan K, Omid A. A, Davood T, Mehdi B, Milad G. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. Journal of Thermal Analysis and Calorimetry 2018; 134(3):2305–2315.10.1007/s10973-018-7671-3 Search in Google Scholar

14. Mohebbi R, Lakzayi H, Sidik NAC, Japar WMAA. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. International Journal of Heat and Mass Transfer. 2018; 117:425-435.10.1016/j.ijheatmasstransfer.2017.10.043 Search in Google Scholar

15. Lotfi R, Saboohi Y, Rashidi A. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. International Communications in Heat and Mass Transfer. 2010; 37(1):74-78.10.1016/j.icheatmasstransfer.2009.07.013 Search in Google Scholar

16. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics reports. 2019; 790:1-48.10.1016/j.physrep.2018.11.004 Search in Google Scholar

17. Almohammadi H, Vatan SN, Esmaeilzadeh E, Motezaker A, Nokhosteen A. Experimental investigation of convective heat transfer and pressure drop of Al2O3/water nanofluid in laminar flow regime inside a circular tube. International Journal of Mechanical and Mechatronics Engineering. 2012; 6(8):1750-1755. Search in Google Scholar

18. Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International communications in heat and mass transfer. 2006; 33(4):529-535.10.1016/j.icheatmasstransfer.2006.01.005 Search in Google Scholar

19. Ruhani B, Toghraie D, Hekmatifar M, Hadian M. Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/ Water hybrid Newtonian nanofluid using experimental data. Physica A: Statistical Mechanics and its Applications. 2019; 525:741-751.10.1016/j.physa.2019.03.118 Search in Google Scholar

20. Abbasi A, Farooq W, Tag-ElDin ESM, Khan SU, Khan MI, Guedri K, et al. Heat transport exploration for hybrid nanoparticle (Cu, Fe3O4) based blood flow via tapered complex wavy curved channel with slip features. Micromachines. 2022; 13(9):1415-1430.10.3390/mi13091415950569736144038 Search in Google Scholar

21. Mehrez Z, El Cafsi A.Forced convection magneto-hydrodynamic Al2O3–Cu/water hybrid nanofluid flow over a backward-facing step. Journal of Thermal Analysis and Calorimetry. 2019; 135(2): 1417-1427.10.1007/s10973-018-7541-z Search in Google Scholar

22. Hussain S, Ahmed SE. Unsteady MHD forced convection over a backward facing step including a rotating cylinder utilizing Fe3O4-water ferrofluid. Journal of Magnetism and Magnetic Materials. 2019; 484:356-366.10.1016/j.jmmm.2019.04.040 Search in Google Scholar

23. Khan MI, Kiyani M, Malik M, Yasmeen T, Khan MWA, Abbas T. Numerical investigation of magnetohydrodynamic stagnation point flow with variable properties. Alexandria Engineering Journal. 2016; 55(3):2367-2673.10.1016/j.aej.2016.04.037 Search in Google Scholar

24. Chu Y-M, Khan MI, Khan NB, Kadry S, Khan SU, Tlili I, et al. Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis. International Communications in Heat and Mass Transfer. 2020; 118:104893.10.1016/j.icheatmasstransfer.2020.104893 Search in Google Scholar

25. Peng X, Peterson G. Convective heat transfer and flow friction for water flow in microchannel structures. International journal of heat and mass transfer. 1996; 39(12):2599-2608.10.1016/0017-9310(95)00327-4 Search in Google Scholar

26. Toghraie D, Mashayekhi R, Arasteh H, Sheykhi S, Niknejadi M, Chamkha AJ. Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions. International Journal of Numerical Methods for Heat and Fluid Flow. 2019; 30(4):1759-1814.10.1108/HFF-11-2018-0628 Search in Google Scholar

27. Moraveji A, Toghraie D. Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. International Journal of Heat and Mass Transfer. 2017; 113:432-443.10.1016/j.ijheatmasstransfer.2017.05.095 Search in Google Scholar

28. Togun H. Laminar CuO–water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle. Applied Nanoscience. 2016; 6(3):371-378.10.1007/s13204-015-0441-7 Search in Google Scholar

29. Alamyane AA, Mohamad AA. Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method. Computers and Mathematics with Applications. 2010; 59(7):2421-2451.10.1016/j.camwa.2009.08.070 Search in Google Scholar

30. Anas RQ, Mussa MA. Maximization of heat transfer density from a single-row cross-flow heat exchanger with wing-shaped tubes using constructal design. Heat Transfer. 2021; 50(6):5906-5924.10.1002/htj.22155 Search in Google Scholar

31. Yang M-H, Yeh R-H, Hwang J-J. Forced convective cooling of a fin in a channel. Energy Conversion and Management. 2010; 51(6):1277-1286.10.1016/j.enconman.2010.01.003 Search in Google Scholar

32. Maia CRM, Aparecido JB, Milanez LF. Heat transfer in laminar flow of non-Newtonian fluids in ducts of elliptical section. International Journal of Thermal Sciences. 2006; 45(11):1066-1072.10.1016/j.ijthermalsci.2006.02.001 Search in Google Scholar

33. Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. Journal of Thermal Analysis and Calorimetry. 2019; 136(3):1333-1345.10.1007/s10973-018-7826-2 Search in Google Scholar

34. Fanambinantsoa HV, Rakotomanga FdA, Randriaza-namparany MA. Étude numérique de la convection forcée dans un canal rectangulaire horizontal muni d’une protubérance sinusoïdale. Afrique Scince. 2016; 12(6):353-364. Search in Google Scholar

35. Buyruk E, Karabulut K. Enhancement of heat transfer for plate fin heat exchangers considering the effects of fin arrangements. Heat Transfer Engineering. 2018; 39 (15): 1392-1404.10.1080/01457632.2017.1366238 Search in Google Scholar

36. Dixit A, Patil AK. Heat transfer characteristics of grooved fin under forced convection. Heat Transfer Engineering. 2015; 36(16): 1409-1416.10.1080/01457632.2015.1003726 Search in Google Scholar

37. Ferhi M, Djebali R. Heat Transfer Appraising and Second Law Analysis of Cu-Water Nanoliquid Filled Microchannel: Slip Flow Regime. Romanian Journal of Physics. 2022; 67:605-630. Search in Google Scholar

38. Mejri I, Mahmoudi A, Abbassi MA, Omri A. Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls. Powder Technology.2014; 266:340-353.10.1016/j.powtec.2014.06.054 Search in Google Scholar

39. Atashafrooz M, Sheikholeslami M, Sajjadi H, Delouei AA. Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction. Journal of Magnetism and Magnetic Materials. 2019; 478:216-226.10.1016/j.jmmm.2019.01.111 Search in Google Scholar

40. Ferhi M, Djebali R, Mebarek-Oudina F, Abu-Hamdeh NH, Abboudi S. Magnetohydrodynamic Free Convection Through Entropy Generation Scrutiny of Eco-Friendly Nanoliquid in a Divided L-Shaped Heat Exchanger with Lattice Boltzmann Method Simulation. Journal of Nanofluids.2022; 11(1):99-112.10.1166/jon.2022.1819 Search in Google Scholar

41. Djebali R, Jaouabi A, Naffouti T, Abboudi S. Accurate LBM appraising of pin-fins heat dissipation performance and entropy generation in enclosures as application to power electronic cooling. International Journal of Numerical Methods for Heat and Fluid Flow. 2019; 30(2):742-768.10.1108/HFF-01-2019-0006 Search in Google Scholar

42. Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids. 1997; 9(6):1591-1598.10.1063/1.869307 Search in Google Scholar

43. Mohamad A. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes: Springer Science and Business Media; 2011:70.10.1007/978-0-85729-455-5 Search in Google Scholar

44. Brinkman HC. The viscosity of concentrated suspensions and solutions. The Journal of chemical physics. 1952; 20(4):571-579.10.1063/1.1700493 Search in Google Scholar

45. Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. International journal of heat and mass transfer. 2005; 48(13):2652-2661.10.1016/j.ijheatmasstransfer.2005.01.029 Search in Google Scholar

46. Hussain S, Ahmed SE, Akbar T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. International Journal of Heat and Mass Transfer. 2017; 114:1054-1066.10.1016/j.ijheatmasstransfer.2017.06.135 Search in Google Scholar

47. Tang G, Tao W, He Y. Simulation of fluid flow and heat transfer in a plane channel using the lattice Boltzmann method. International journal of modern physics B. 2003; 17(1):183-187.10.1142/S0217979203017485 Search in Google Scholar

48. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chemical Engineering and Processing-Process Intensification. 2018; 125:56-66.10.1016/j.cep.2018.01.004 Search in Google Scholar