Otwarty dostęp

Plate Structural Analysis Based on a Double Interpolation Element with Arbitrary Meshing


Zacytuj

1. Ahmadian H., Faroughi S. (2011a), Development of super-convergent plane stress element formulation using an inverse approach, Finite Elements in Analysis and Design, 47(7), 796-803.10.1016/j.finel.2011.02.010 Search in Google Scholar

2. Ahmadian H., Faroughi S. (2011b), Shape functions of superconvergent finite element models, Thin-Walled Structures, 49(9), 1178-1183.10.1016/j.tws.2011.05.004 Search in Google Scholar

3. Allman D. J. (1984), A compatible triangular element including vertex rotations for plane elasticity analysis, Computers and Structures, 19(1), 1-8.10.1016/0045-7949(84)90197-4 Search in Google Scholar

4. Ansys (2009), ANSYS Workbench User’s Guide, ANSYS, Inc.: Canonsburg, PA 15317, USA. Search in Google Scholar

5. Bui T. Q., Vo D. Q., Zhang C., Nguyen D. D. (2014), A consecutive-interpolation quadrilateral element (CQ4): Formulation and applications, Finite Elements in Analysis and Design, 84, 14-31.10.1016/j.finel.2014.02.004 Search in Google Scholar

6. Chau-Dinh T., Trung-Kien N., Nguyen-Van H., Ton-That H. L. (2021), A MITC3+ element improved by edge-based smoothed strains for analyses of laminated composite plates using the higher-order shear deformation theory, Acta Mechanica, 232(2), 389-422.10.1007/s00707-020-02834-0 Search in Google Scholar

7. Da V., Beirao L., Annalisa B., Lovadina C., Martinelli M., Sangalli G. (2012), An isogeometric method for the Reissner Mindlin plate bending problem, Computer Methods in Applied Mechanics and Engineering, 209, 45-53.10.1016/j.cma.2011.10.009 Search in Google Scholar

8. Devarajan B., Kapania R. K. (2020), Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis, Composite Structures, 238, 111881.10.1016/j.compstruct.2020.111881 Search in Google Scholar

9. Faroughi S., Ahmadian H. (2010), Shape functions associated with inverse element formulations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(2), 304-311.10.1243/09544062JMES2350 Search in Google Scholar

10. Fredriksson M., Ottosen N. S. (2004), Fast and accurate 4-node quadrilateral, International Journal for Numerical Methods in Engineering, 61(11), 1809-1834.10.1002/nme.1133 Search in Google Scholar

11. Ghugal Y. M., Sayyad A. S. (2010), Free vibration of thick orthotropic plates using trigonometric shear deformation theory, Latin American Journal of Solids and Structures, 8, 229-243.10.1590/S1679-78252011000300002 Search in Google Scholar

12. Hoang T. T. L. (2020), A new C0 third-order shear deformation theory for the nonlinear free vibration analysis of stiffened functionally graded plates, Facta Universitatis, Series: Mechanical Engineering, Online first. Search in Google Scholar

13. Hoang-Lan T. T. (2020), A Combined Strain Element to Functionally Graded Structures in Thermal Environment, Acta Polytechnica, 60(6), 528-539.10.14311/AP.2020.60.0528 Search in Google Scholar

14. Hoang-Lan T. T. (2020), The linear and nonlinear bending analyses of functionally graded carbon nanotube-reinforced composite plates based on the novel four-node quadrilateral element, European Journal of Computational Mechanics, 29(1), 139-172. Search in Google Scholar

15. Hoang-Lan T. T., Nguyen-Van H. (2021), A combined strain element in static, frequency and buckling analyses of laminated composite plates and shells, Periodica Polytechnica Civil Engineering, 65(1), 56-71. Search in Google Scholar

16. Hoang-Lan T. T., Nguyen-Van H., Chau-Dinh T. (2021), A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets, Archive of Applied Mechanics. Search in Google Scholar

17. Kirchhoff G. R. (1850), Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe, Journal fur die reine und angewandte Mathematik, 40, 51-88.10.1515/crll.1850.40.51 Search in Google Scholar

18. Miglani J., Devarajan B., Kapania R. K. (2018), Thermal buckling analysis of periodically supported composite beams using Isogeometric analysis, AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1224.10.2514/6.2018-1224 Search in Google Scholar

19. Mindlin R. D. (1951), Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, ASME Journal of Applied Mechanics, 18, 31-38.10.1115/1.4010217 Search in Google Scholar

20. Nguyen-Xuan H., Liu G. R., Thai-Hoang C., Nguyen-Thoi T. (2010), An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner– Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 199(9), 471-489.10.1016/j.cma.2009.09.001 Search in Google Scholar

21. Pian T. H. H., Sumihara K. (1984), Rational approach for assumed stress finite elements, International Journal for Numerical Methods in Engineering, 20(9), 1685-1695.10.1002/nme.1620200911 Search in Google Scholar

22. Reddy J. N. (1984), A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, 51(4), 745-752.10.1115/1.3167719 Search in Google Scholar

23. Reddy J. N. (2007), Theory and Analysis of Elastic Plates and Shells: CRC Press.10.1201/9780849384165 Search in Google Scholar

24. Robert D. B. (1979), Formulas for natural frequency and mode shape, New York: Van Nostrand Reinhold. Search in Google Scholar

25. Sayyad A. S., Ghugal Y. M. (2012), Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory, Applied and Computational Mechanics, 6(1), 65-82. Search in Google Scholar

26. Ton T. H. L. (2019), Finite element analysis of functionally graded skew plates in thermal environment based on the new third-order shear deformation theory, Journal of Applied and Computational Mechanics, 6(4), 1044-1057. Search in Google Scholar

27. Ton T. H. L. (2020), A novel quadrilateral element for dynamic response of plate ‎structures subjected to blast loading, Journal of Applied and Computational Mechanics, 6, 1314-1323. Search in Google Scholar

28. Ton T. H. L. (2020), Improvement on eight-node quadrilateral element (IQ8) using twice-interpolation strategy for linear elastic fracture mechanics, Engineering Solid Mechanics, 8(4), 323-336.10.5267/j.esm.2020.3.005 Search in Google Scholar

29. Ton-That H. L., Nguyen-Van H., Chau-Dinh T. (2020), Nonlinear Bending Analysis of Functionally Graded Plates Using SQ4T Elements based on Twice Interpolation Strategy, Journal of Applied and Computational Mechanics, 6(1), 125-136. Search in Google Scholar

30. Ton-That H. L., Nguyen-Van H., Chau-Dinh T. (2020), Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C, Comptes Rendus. Mécanique, 348(4), 285-305. Search in Google Scholar

31. Tran L. V., Wahab M. A., Seung-Eock K. (2017), An isogeometric finite element approach for thermal bending and buckling analyses of laminated composite plates, Composite Structures, 179, 35-49.10.1016/j.compstruct.2017.07.056 Search in Google Scholar

32. Wu S. C., Zhang W. H., Peng X., Miao B. R. (2012), A twice-interpolation finite element method (TFEM) for crack propagation problems, International Journal of Computational Methods, 9(4), 1250055.10.1142/S0219876212500557 Search in Google Scholar

33. Xie X. P. (2005), An accurate hybrid macro-element with linear displacements, Communications in Numerical Methods in Engineering, 21(1), 1-12.10.1002/cnm.721 Search in Google Scholar

34. Xuan H. N. (2008), A strain smoothing method in finite elements for structural analysis, PhD thesis, University of Liege, Belgium. Search in Google Scholar

35. Zheng C., Wu S. C., Tang X. H., Zhang J. H. (2010), A novel twice-interpolation finite element method for solid mechanics problems, Acta Mechanica Sinica, 26(2), 265-278.10.1007/s10409-009-0265-3 Search in Google Scholar