Otwarty dostęp

Experimental Estimation of Wear Resistance of Polyamide Composites, Reinforced By Carbon and Glass Fibres Used in Metal-Polymer Gearings


Zacytuj

1. Bajpaj P., Kahraman A., Anderson N.E. (2004), A surface wear prediction methodology for parallel-axis gear pairs, Journal of Tribology, 126, 597–605.10.1115/1.1691433 Search in Google Scholar

2. Bobach L., Beilicke R., Bartel D., Deters L. (2012), Thermal elastohydrodynamic simulation of involute spur gears incorporating mixed friction, Tribology International, 48, 191–206.10.1016/j.triboint.2011.11.025 Search in Google Scholar

3. Bongaerts J. H. H., Day J. P. R., Marriott C.,. Pudney P. D. A, Williamson A.-M. (2018), In situ confocal Raman spectroscopy of lubricants in a soft elastohydrodynamic tribological contact, Journal of applied physics, 104, 014913.10.1063/1.2952054 Search in Google Scholar

4. Brandão J.A., Seabra J.H.O., Castro J.D., Martins R. (2014), On the simulation of simultaneous fatigue and mild wear during a micro-pitting gear test, International Gear Conference: 26th–28th August 2014, Lyon, P. 523–531. Search in Google Scholar

5. Brauer J., Andersson S. (2003), Simulation of wear in gears with flank interference – a mixed FE and analytical approach, Wear, 254, 1216–1232.10.1016/S0043-1648(03)00338-7 Search in Google Scholar

6. Bravo A., Koffi D., Toubal L., Erchiqui F. (2015), Life and damage mode modeling applied to plastic gears, Engineering Failure Analysis, 58, 1, 113–133.10.1016/j.engfailanal.2015.08.040 Search in Google Scholar

7. Brethee K, Zhenc D., Gua F., Ball A (2017), Helical gear wear monitoring: Modelling and experimental validation, Mechanism and Machine Theory, 117, 210–229.10.1016/j.mechmachtheory.2017.07.012 Search in Google Scholar

8. Cherepova T., Dmitrieva G., Tisov O., Dukhota O., Kindrachuk M. (2018), Research on the properties of Co-Tic and Ni-TiC hip-sintered alloys, Acta mechanica et automatica, 13, 1, 57–67.10.2478/ama-2019-0009 Search in Google Scholar

9. Chernets M. (2019a), A method for predicting contact strength and life of archimedes and involute worm gears, considering the effect of wear and teeth correction, Tribology in Industry, 41, 1, 134–141.10.24874/ti.2019.41.01.15 Search in Google Scholar

10. Chernets M. (2019b), Method of calculation of tribotechnical characteristics of the metal-polymer gear, reinforced with glass fiber, taking into account the correction of tooth, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21, 4, 546–552.10.17531/ein.2019.4.2 Search in Google Scholar

11. Chernets M., Chernets Ju. (2017) The simulation of influence of engagement conditions and technological teeth correction on contact strength, wear and durability of cylindrical spur gear of electric locomotive, Proc. JMechE. Part J: Journal of Engineering Tribology, 231, 1, 57 – 62. Search in Google Scholar

12. Chernets M.V., Kelbinski J., Jarema R.Ja. (2011), Generalized method for the evaluation of cylindrical involute gears, Materials Science, 1, 45–51.10.1007/s11003-011-9366-9 Search in Google Scholar

13. Chernets’ M.V., Lenik K. (1997), On estimation of materials durability, Materials science, 33, 834–840.10.1007/BF02355563 Search in Google Scholar

14. Drozdov Ju. N. (1969), The calculation of gear trains wear resistance [In Russian], Mashinovedenie, 2, 84–88. Search in Google Scholar

15. Drozdov Ju. N. (1975), Development of wear calculation method and friction simulation [In Russian], Wear resistance, Science, Moscow, 120–135. Search in Google Scholar

16. Drozdov Ju.N., Nazhestkin B.P. (1990), The development of methods to calculate weaer of toothed wheels [In Russian], Engineering Gerald, 11, 15–17. Search in Google Scholar

17. Feng K., Borghesani P., Smith W. A., Randall R.B., Peng Z. (2019), Vibration-based updating of wear prediction for spur gears, Wear, 426–427, part B, 1410–1415.10.1016/j.wear.2019.01.017 Search in Google Scholar

18. Flodin A. (2000) Wear of spur and helical gears. Dissertations and Theses, UMJ Dissertations Publishing. Search in Google Scholar

19. Flodin A., Andersson S. (1997), Simulation of mild wear in spur gears, Wear, 207, 1–2, 16–23.10.1016/S0043-1648(96)07467-4 Search in Google Scholar

20. Flodin A., Andersson S. (1999), Wear simulation of spur gears, Lubrication science, 5(3), 225–250.10.1002/tt.3020050303 Search in Google Scholar

21. Flodin A., Andersson S. (2000), Simulation of mild wear in helical gears, Wear, 241(2), 123–128.10.1016/S0043-1648(00)00384-7 Search in Google Scholar

22. Flodin A., Andersson S. A (2000), Simplified model for wear prediction in helical gears, Wear, 249 (3–4), 285–292.10.1016/S0043-1648(01)00556-7 Search in Google Scholar

23. Gębura A., Kłysz S., Tokarski T. (2019), Monitoring wear of gear wheel of helicopter transmission using the FAM-C and FDM-A methods, Procedia Structural Integrity, 16, 184–191.10.1016/j.prostr.2019.07.039 Search in Google Scholar

24. Gorokh G., M.I.Pashechko M., Borc J., Lozovenko A., Kashko I., Latos A. (2018), Matrix coatings based on anodic alumina with carbon nanostructures in the pores, Applied surface science, 433, 1, 829–835.10.1016/j.apsusc.2017.10.117 Search in Google Scholar

25. Greco A.C., Erck R., Ajayi O., Fenske G. (2011), Effect of reinforcement morphology on high-speed sliding friction and wear of PEEK polymers, Wear, 271, 9–10, 2222–2229.10.1016/j.wear.2011.01.065 Search in Google Scholar

26. Grib V.V. (1982), Solwing of tribotechnical problems by numerical methods [In Russian], Science, Noscow. Search in Google Scholar

27. Guilbault R., Lalonde S. (2019), A stochastic prediction of roughness evolution in dynamic contact modelling applied to gear mild wear and contact fatigue, Tribology International, 140, 10585410.1016/j.triboint.2019.105854 Search in Google Scholar

28. Hegadekatte V., Hilgert J., Kraft O., Huber N. (2010), Multi time scale simulations for wear prediction in micro-gears, Wear, 268, 316–32410.1016/j.wear.2009.08.017 Search in Google Scholar

29. Kahraman A., Bajpaj P., Anderson N.E. (2005), Influence of tooth profile deviations on helical gear wear, Journal of mechanical design, 127, 4, 656–663.10.1115/1.1899688 Search in Google Scholar

30. Kindrachuk M., Volchenko A,. Volchenko D, Volchenko N., Poliakov P., Tisov O., Kornienko A. (2019b) Polymeres with enhanced energy capacity modified by semiconductor materials, Functional materials, 26, 3, 629–634.10.15407/fm26.03.629 Search in Google Scholar

31. Kindrachuk M.V., Volchenko O.I., Volchenko D.O., Volchenko N.O., Polyakov P.A., Kornienko A.O., Yurchuk A.O. (2019a), Polymeric Materials Modified by Semiconductor Substances in Friction Units of Braking Devices, Journal on nano- and electronic physics, 11, 3, 03014.10.21272/jnep.11(3).03014 Search in Google Scholar

32. Kindrachuk V., Galanov B. (2014), An efficient approach for numerical treatment of some inequalities in solid mechanics on examples of Kuhn–Tucker and Signorini–Fichera conditions, Journal of the Mechanics and Physics of Solids, 63, 432–450.10.1016/j.jmps.2013.08.008 Search in Google Scholar

33. Kolivand M., Kahraman A. (2010), An ease-off based method for loaded tooth contact analysis of hypoid gears having local and global surface deviations, Journal of mechanical design, 132, 7, 071004.10.1115/1.4001722 Search in Google Scholar

34. Kurdi A, Hongjian Wang H, Chang L. (2018), Effect of nano-sized TiO2 addition on tribological behaviour of poly ether ether ketone composite, Tribology International, 117, 225–235.10.1016/j.triboint.2017.09.002 Search in Google Scholar

35. Liu H., Liu H., Zhu C., Tang J. (2020), Study on gear contact fatigue failure competition mechanism considering tooth wear evolution, Tribology International, 147, 106277 (Journal pre-proof).10.1016/j.triboint.2020.106277 Search in Google Scholar

36. Liu, X., Yang, Y., Zhang, J. (2016), Investigation on coupling effects between surface wear and dynamics in a spur gear system, Tribology International, 101, 383–394.10.1016/j.triboint.2016.05.006 Search in Google Scholar

37. Mao K. (2007), Gear tooth contact analysis and its application in the redaction of fatigue wear, Wear, 262, 11/12, 1281–1288.10.1016/j.wear.2006.06.019 Search in Google Scholar

38. Pashechko M., Krzysztof Dziedzic K., Mendyk E., Jerzy Jozwik J. (2018), Chemical and phase composition of the friction surfaces Fe– Mn–C–B–Si–Ni–Cr hardfacing coatings, Journal of tribology, 140(2), 021302.10.1115/1.4037953 Search in Google Scholar

39. Pasta A., Mariotti Virzi G. (2007), Finite element method analysis of a spur gear with a corrected profile, Journal of strain analysis, 42, 281–292.10.1243/03093247JSA284 Search in Google Scholar

40. Pronikov A. S. (1978), Reliability of machines [In Russian], Machine engineering, Moscow. Search in Google Scholar

41. Raadnui S. (2019) Spur gear wear analysis as applied for tribological based predictive maintenance diagnostics, Wear, 268, 316–324.10.1016/j.wear.2018.12.088 Search in Google Scholar

42. Wang H., Zhou C., Leia Y., Liu Z. (2019), An adhesive wear model for helical gears in line-contact mixed elastohydrodynamic lubrication, Wear, 426–427, part A, 896–909.10.1016/j.wear.2019.01.104 Search in Google Scholar

43. Wang, Y., Wang, Q. J. (2013), Stribeck Curves. Encyclopedia of Tribology, 3365–33150.10.1007/978-0-387-92897-5_148 Search in Google Scholar

44. Wei J., Niu R., Dong Q., Zhang S. (2020), Fretting-slipping fatigue failure mode in planetary gear system, International Journal of Fatigue, 136, 105632.10.1016/j.ijfatigue.2020.105632 Search in Google Scholar

45. Wu S., Cheng H.S. (1993), Sliding wear calculation in spur gears, Journal of Tribology, 115, 493–500.10.1115/1.2921665 Search in Google Scholar

46. Zorkoa D, Kulovec S, Duhovnika J, Tavcar J. (2019), Durability and design parameters of a Steel/PEEK gear pair, Mechanisms and machine theory, 140, 825–846.10.1016/j.mechmachtheory.2019.07.001 Search in Google Scholar