1. bookTom 13 (2019): Zeszyt 4 (December 2019)
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

The Impact of Troposphere Correction for Designation of the Ellipsoidal Height of Aircraft at Approach to Landing Procedure

Data publikacji: 30 Jan 2020
Tom & Zeszyt: Tom 13 (2019) - Zeszyt 4 (December 2019)
Zakres stron: 233 - 237
Otrzymano: 03 Oct 2019
Przyjęty: 12 Dec 2019
Informacje o czasopiśmie
Format
Czasopismo
eISSN
2300-5319
Pierwsze wydanie
22 Jan 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Abdelfatah M. A, Mousa A.E., El-Fiky G. S. (2018), Assessment oftropospheric delay mapping function models in Egypt: Using PTD database model, NRIAG Journalof Astronomy and Geophysics, 7(1), 47–51.10.1016/j.nrjag.2017.12.001Search in Google Scholar

2. Auh S-C., Lee S-B. (2018), Analysis of the Effect of Tropospheric Delay on Orthometric Height Determination at High Mountain, KSCE Journal of Civil Engineering, 22, 4573.10.1007/s12205-018-0402-2Search in Google Scholar

3. Boon F.J.G., de Jonge P.J., Tiberius C.C.J.M. (1997), Precise aircraft positioning by fast ambiguity resolution using improved troposphere modeling, Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1997), Kansas City, MO, 1877–1884.Search in Google Scholar

4. Collins J.P. (1999), Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System, University of New Brunswick, Department of Geodesy and Geomatics Engineering, Technical Report no. 203.Search in Google Scholar

5. Ćwiklak J., Jafernik H. (2010), The monitoring system for aircraft and vehicles of public order services based on GNSS, Annual of Navigation, 16, 15–24.Search in Google Scholar

6. Guilbert A. (2016), Optimal GPS/GALILEO GBAS methodologies with an application to troposphere, PhD thesis, Institut National Polytechnique de Toulouse (INP Toulouse).Search in Google Scholar

7. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. (2008), GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo and more, SpringerWienNewYork, Wien, Austria.Search in Google Scholar

8. International Civil Aviation Organization (2006), ICAO Standards and Recommended Practices (SARPS). Annex 10, Volume I (Radionavigation aids), Polish version available at website: http://www.ulc.gov.pl/pl/prawo/prawomi%C4%99dzynarodowe/206-konwencje, current on: 15.10.2018.Search in Google Scholar

9. Krasuski K., Jafernik H. (2017), Determination troposphere delay using GPS sensor in air transport, Autobusy: technika, eksploatacja, systemy transportowe, 18(6), 826–829 (in Polish).Search in Google Scholar

10. Krasuski K., Wierzbicki D. (2016), The impact of atmosphere delays in processing of aircraft’s coordinates determination, Journal of KONES, 23(2), 209–214.10.5604/12314005.1213594Search in Google Scholar

Kutsenko O., Ilnytska S., Konin V. (2018), Investigation of the the residual tropospheric error influence on the coordinate determination accuracy in a satellite landing system, Aviation, 22(4), 156–165.10.3846/aviation.2018.7082Search in Google Scholar

12. Lkan R. M., Ozulu İ. M., Ilci V. (2016), Precise Point Positioning (PPP) Technique versus Network-RTK GNSS, FIG Working Week 2016, Christchurch, New Zealand, 1–10.Search in Google Scholar

13. Neri P. (2011), Use of GNSS signals and their augmentations for Civil Aviation navigation during Approaches with Vertical Guidance and Precision Approaches, PhD thesis, Institut National Polytechnique de Toulouse (INP Toulouse).Search in Google Scholar

14. Parameswaran K., Saha K., Raju C.S. (2008), Development of a regional tropospheric delay model for GPS-based navigation with emphasis to the Indian Region, Radio Science, 43, RS400710.1029/2007RS003782Search in Google Scholar

15. Sanz Subirana J., Juan Zornoza J. M., Hernandez-Pajares M. (2013), GNSS Data Processing, Volume I: Fundamentals and Algorithms, Publisher: ESA Communications, ESTEC, Noordwijk, Netherlands.Search in Google Scholar

16. Savchuk S., Khoptar A. (2018), Estimation of Slant Tropospheric Delays from GNSS Observations with Using Precise Point Positioning Method, Annual of Navigation, 25, 253–266.10.1515/aon-2018-0017Search in Google Scholar

17. Schaer S. (1999), Mapping and predicting the Earth’s ionosphere using Global Positioning System, PhD thesis, Neunundfunfzigster Band volume 59, Zurych.Search in Google Scholar

18. Sultana Q., Sarma A.D., Javeed M.Q. (2013), Estimation of tropospheric time delay for Indian LAAS, 2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System (ICEVENT), Tiruvannamalai, 1–5.10.1109/ICEVENT.2013.6496529Search in Google Scholar

19. Takasu T. (2013), RTKLIB ver. 2.4.3 Manual, RTKLIB: An Open Source Program Package for GNSS Positioning, Paper available at website: http://www.rtklib.com/prog/manual_2.4.2.pdf, current on 2019.Search in Google Scholar

20. Uemo M., Hoshinoo K., Matsunaga K., Kawai M., Nakao H., Langley R., Bisnath S. (2001), Assessment of atmospheric delay correction models for the Japanese MSAS; Proceedings of the ION GPS 2001; Salt Lake, UT, USA.Search in Google Scholar

21. Vyas M. R., Lim S., Rizos C. (2011), Analysis of Zenith Path Delay in dynamically changing environment, International Global Navigation Satellite Systems Society IGNSS Symposium 2011, University of New South Wales, Sydney, NSW, Australia, 1–8.Search in Google Scholar

22. Wang Z., Xin P., Li R., Wang S. (2017), A Method to Reduce Non-Nominal Troposphere Error, Sensors, 17, 1751.10.3390/s17081751557949228758983Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo