Otwarty dostęp

Image Processing Techniques for ROI Identification in Rheumatoid Arthritis Patients from Thermal Images


Zacytuj

1. Afshar S., Sheehan M. (2017), Applying infrared thermography and image analysis to dilute 2-phase particulate systems: Hot Particle Curtains, Energy Procedia, 110, 408-413.10.1016/j.egypro.2017.03.161Search in Google Scholar

2. Barcelos Z.E., Caminhas W.M., Ribeiro E., Pimenta E.M., Palhares R.M. (2014), A combined method for segmentation and registration for an advanced and progressive evaluation of thermal images, Sensors, 14, 21950-21967.10.3390/s141121950Open DOISearch in Google Scholar

3. Bezerra H.G., Attizzani G.F., Sirbu V., Musumeci G., Lortkipanidze N., Fujino Y., Wang W., Nakamura S., Erglis A., Guagliumi G., Costa M.A. (2013), Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention, JACC Cardiovasc Interv., 6(3), 228-36.10.1016/j.jcin.2012.09.017Search in Google Scholar

4. Cojocaru M., Cojocaru I.M., Silosi I., Vrabie C.D., Tanasescub R., (2010), Extra-articular manifestations in rheumatoid arthritis; Maedica (Buchar), 5(4), 286–291.Search in Google Scholar

5. Dey N., Ashour A.S., Chakraborty S., Banerjee S., Gospodinova E., Gospodinov M., Hassanien A.E. (2017), Watermarking in biomedical signal processing, Intelligent Techniques in Signal Processing for Multimedia Security, Dey N, Santhi V (eds); Springer International Publishing, 345-369.10.1007/978-3-319-44790-2_16Search in Google Scholar

6. Fernández-Cuevas I., Bouzas Marins J.C., Arnáiz Lastras J., Gómez Carmona P.M., Piñonosa Cano S., García-Concepción M.A., Sillero-Quintana M. (2015), Classification of factors influencing the use of infrared thermography in humans: a review, Infrared Physics & Technology 71, 28–55.10.1016/j.infrared.2015.02.007Search in Google Scholar

7. Gabriel S.E. (2001), The epidemiology of rheumatoid arthritis, Rheum Dis Clin North Am., 27(2), 269–81.10.1016/S0889-857X(05)70201-5Open DOISearch in Google Scholar

8. Herman C., Pirtini Cetingul M. (2011, Quantitative visualization and detection of skin cancer using dynamic thermal imaging, J. Vis. Exp., 51, 1-4.10.3791/2679319710821587160Search in Google Scholar

9. Ihnatouski M.I. (2000), Methods of segmentation of AFM and STM images. Recognition and description of cluster surface objects in the nanoscale IV Belarusian seminar on scanning probe microscopy (SPM-4). V.A. Belyi Metal Polymer Research Institute: 122-126.Search in Google Scholar

10. John H.A., Niumsawatt V., Rozen W.M., Whitaker I.S. (2016), Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review, Gland Surg, 5(2), 122-132.Search in Google Scholar

11. Jones B.F. (1998), A re-appraisal of the use of infrared thermal image analysis in medicine, IEEE Trans Med Imaging, 17,1019–27.10.1109/42.74663510048859Open DOISearch in Google Scholar

12. Kaczmarek M., Nowakowski A. (2016), Active IR-thermal imaging in medicine, J Nondestruct Eval, 35(19), 1-16.10.1007/s10921-016-0335-yOpen DOISearch in Google Scholar

13. Kovalev V., Petrou M. (1996), Multidimensional co-occurrence matrices for object recognition and matching, Graphical Models and Image Processing., 58(3), 187-197.10.1006/gmip.1996.0016Search in Google Scholar

14. Lahiri B.B., Bagavathiappan S., Jayakumar T. (2012), Medical applications of infrared thermography, A review, Infrared Physics & Technology, 55(4), 221-235.10.1016/j.infrared.2012.03.007711078732288544Open DOISearch in Google Scholar

15. Ludwig N., Formenti D., Gargano M., Alberti G. (2014), Skin temperature evaluation by infrared thermography: comparison of image analysis methods, Infrared Physics & Technology, 62,1-6.10.1016/j.infrared.2013.09.011Open DOISearch in Google Scholar

16. Nowakowski A., Siondalski P., Moderhak M., Kaczmarek M. (2014), Problems of cardiosurgery wound healing evaluation, Proceedings of QIRT, 1–9.Search in Google Scholar

17. Nowakowski A., Siondalski P., Moderhak M., Kaczmarek M. (2015), A new diagnostic method for evaluation of cardiosurgery wound healing, JQIRT, 1–16.10.1080/17686733.2015.1077543Search in Google Scholar

18. Purslow C., Wolffsohn J.S., Santodomingo-Rubido J. (2005), The effect of contact lens wear on dynamic ocular surface temperature, Contact Lens & Anterior Eye, 28, 29–36.10.1016/j.clae.2004.10.00116318832Search in Google Scholar

19. Renkielska A., Kaczmarek M., Nowakowski A., Grudzinski J., Czapiewski P., Krajewski A., Grobelny I. (2014), Active dynamic infrared thermal imaging in burn depth evaluation, J. Burn Care Res, 35(5), 294–303.10.1097/BCR.000000000000005925144810Search in Google Scholar

20. Renkielska A., Nowakowski A., Kaczmarek M., Ruminski J. (2006), Burn depths evaluation based on active dynamic IR thermal imaging—a preliminary study, Burns, 32, 867–875.10.1016/j.burns.2006.01.02416997482Open DOISearch in Google Scholar

21. Ring E.F.J. (1998), Progress in the measurement of human body temperature, IEEE Eng Med Biol, 17, 19–24.10.1109/51.6879599672806Search in Google Scholar

22. Tattersall G.J. (2016), Infrared thermography: non-invasive window into thermal physiology, Comp Biochem Physiol A Mol Integr Physiol, 202, 78-98.10.1016/j.cbpa.2016.02.02226945597Search in Google Scholar

23. Wasilewska A. (2017), Advantages of active over passive thermography in terms of applying in medicine, Scientific and didactic equipment, 22(2), 88-93.Search in Google Scholar

24. Wasilewska A., Pauk J. (2017), Safety conditions in dynamic IT examinations of rheumatoid arthritis lesions, Scientific and didactic equipment, 22(3), 205-214.Search in Google Scholar