Otwarty dostęp

Insights into Autophagic Machinery and Lysosomal Function in Cells Involved in the Psoriatic Immune-Mediated Inflammatory Cascade


Zacytuj

Abdallah HB, Johansen C, Iversen L (2021) Key signaling pathways in psoriasis: Recent insights from antipsoriatic therapeutics. Psoriasis 11:83–97. https://doi.org/10.2147/ptt.s294173 AbdallahHB JohansenC IversenL 2021 Key signaling pathways in psoriasis: Recent insights from antipsoriatic therapeutics Psoriasis 11 83 97 https://doi.org/10.2147/ptt.s294173 Search in Google Scholar

Akinduro O, Sully K, Patel A et al (2016) Constitutive autophagy and nucleophagy during epidermal differentiation. J Invest Dermatol 136:1460–1470. https://doi.org/10.1016/j.jid.2016.03.016 AkinduroO SullyK PatelA 2016 Constitutive autophagy and nucleophagy during epidermal differentiation J Invest Dermatol 136 1460 1470 https://doi.org/10.1016/j.jid.2016.03.016 Search in Google Scholar

Albanesi C, Madonna S, Gisondi P et al (2018) The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front Immunol 9:1549. https://doi.org/10.3389/fimmu.2018.01549 AlbanesiC MadonnaS GisondiP 2018 The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis Front Immunol 9 1549 https://doi.org/10.3389/fimmu.2018.01549 Search in Google Scholar

Al-Daraji WI, Grant KR, Ryan K et al (2002) Localization of calcineurin/NFAT in human skin and psoriasis and inhibition of calcineurin/NFAT activation in human keratinocytes by cyclosporin A. J Invest Dermatol 118:779–788. https://doi.org/10.1046/j.1523-1747.2002.01709.x Al-DarajiWI GrantKR RyanK 2002 Localization of calcineurin/NFAT in human skin and psoriasis and inhibition of calcineurin/NFAT activation in human keratinocytes by cyclosporin A J Invest Dermatol 118 779 788 https://doi.org/10.1046/j.1523-1747.2002.01709.x Search in Google Scholar

Al-Daraji WI, Malak TT, Prescott RJ et al (2009) Expression, localisation and functional activation of NFAT-2 in normal human skin, psoriasis, and cultured keratocytes. Int J Clin Exp Med 2:176–192. Al-DarajiWI MalakTT PrescottRJ 2009 Expression, localisation and functional activation of NFAT-2 in normal human skin, psoriasis, and cultured keratocytes Int J Clin Exp Med 2 176 192 Search in Google Scholar

Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913–1930. https://doi.org/10.1101/gad.287524.116 AmaravadiR KimmelmanAC WhiteE 2016 Recent insights into the function of autophagy in cancer Genes Dev 30 1913 1930 https://doi.org/10.1101/gad.287524.116 Search in Google Scholar

Angiolilli C, Leijten EFA, Bekker CPJ et al (2022) ZFP36 family members regulate the proinflammatory features of psoriatic dermal fibroblasts. J Invest Dermatol 142:402–413. https://doi.org/10.1016/j.jid.2021.06.030 AngiolilliC LeijtenEFA BekkerCPJ 2022 ZFP36 family members regulate the proinflammatory features of psoriatic dermal fibroblasts J Invest Dermatol 142 402 413 https://doi.org/10.1016/j.jid.2021.06.030 Search in Google Scholar

Arasa J, Terencio MC, Andrés RM et al (2015) Decreased SAPK/JNK signalling affects cytokine release and STAT3 activation in psoriatic fibroblasts. Exp Dermatol 24:800–802. https://doi.org/10.1111/exd.12787 ArasaJ TerencioMC AndrésRM 2015 Decreased SAPK/JNK signalling affects cytokine release and STAT3 activation in psoriatic fibroblasts Exp Dermatol 24 800 802 https://doi.org/10.1111/exd.12787 Search in Google Scholar

Arbogast F, Arnold J, Hammann P et al (2019) ATG5 is required for B cell polarization and presentation of particulate antigens. Autophagy 15:280–294. https://doi.org/10.1080/15548627.2018.1516327 ArbogastF ArnoldJ HammannP 2019 ATG5 is required for B cell polarization and presentation of particulate antigens Autophagy 15 280 294 https://doi.org/10.1080/15548627.2018.1516327 Search in Google Scholar

Arnold J, Murera D, Arbogast F et al (2016) Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses. Cell Death Differ 23:8538–8564. https://doi.org/10.1038/cdd.2015.149 ArnoldJ MureraD ArbogastF 2016 Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses Cell Death Differ 23 8538 8564 https://doi.org/10.1038/cdd.2015.149 Search in Google Scholar

Assali EA, Shlomo D, Zeng J et al (2019) Nanoparticle-mediated lysosomal reacidification restores mitochondrial turnover and function in β cells under lipotoxicity. FASEB J 33:4154–4165. https://doi.org/10.1096/fj.201801292R AssaliEA ShlomoD ZengJ 2019 Nanoparticle-mediated lysosomal reacidification restores mitochondrial turnover and function in β cells under lipotoxicity FASEB J 33 4154 4165 https://doi.org/10.1096/fj.201801292R Search in Google Scholar

Balato A, di Caprio R, Lembo S et al (2014) Mammalian target of rapamycin in inflammatory skin conditions. Eur J Inflamm 12:341–350. https://doi.org/10.1177/1721727X1401200213 BalatoA di CaprioR LemboS 2014 Mammalian target of rapamycin in inflammatory skin conditions Eur J Inflamm 12 341 350 https://doi.org/10.1177/1721727X1401200213 Search in Google Scholar

Ballabio A, Bonifacino JS (2020) Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 21:101–118. https://doi.org/10.1038/s41580-019-0185-4 BallabioA BonifacinoJS 2020 Lysosomes as dynamic regulators of cell and organismal homeostasis Nat Rev Mol Cell Biol 21 101 118 https://doi.org/10.1038/s41580-019-0185-4 Search in Google Scholar

Belleudi F, Leone L, Nobili V et al (2007) Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic 8:1854–1872. https://doi.org/10.1111/j.1600-0854.2007.00651.x BelleudiF LeoneL NobiliV 2007 Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways Traffic 8 1854 1872 https://doi.org/10.1111/j.1600-0854.2007.00651.x Search in Google Scholar

Benoit-Lizon I, Jacquin E, Apetoh L (2018) Selective autophagy restricts IL-9 secretion from TH9 cells: Relevance in cancer growth. Cell Cycle 17:391–392. https://doi.org/10.1080/15384101.2017.1414680 Benoit-LizonI JacquinE ApetohL 2018 Selective autophagy restricts IL-9 secretion from TH9 cells: Relevance in cancer growth Cell Cycle 17 391 392 https://doi.org/10.1080/15384101.2017.1414680 Search in Google Scholar

Bento CF, Renna M, Ghislat G et al (2016) Mammalian autophagy: How does it work? Annu Rev Biochem 85:685–713. https://doi.org/10.1146/annurev-biochem-060815-014556 BentoCF RennaM GhislatG 2016 Mammalian autophagy: How does it work? Annu Rev Biochem 85 685 713 https://doi.org/10.1146/annurev-biochem-060815-014556 Search in Google Scholar

Bernard FX, Morel F, Camus M et al (2012) Keratinocytes under fire of proinflammatory cytokines: Bona fide innate immune cells involved in the physiopathology of chronic atopic dermatitis and psoriasis. J Allergy 2012:718725. https://doi.org/10.1155/2012/718725 BernardFX MorelF CamusM 2012 Keratinocytes under fire of proinflammatory cytokines: Bona fide innate immune cells involved in the physiopathology of chronic atopic dermatitis and psoriasis J Allergy 2012 718725 https://doi.org/10.1155/2012/718725 Search in Google Scholar

Bernink JH, Peters CP, Munneke M et al (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229. https://doi.org/10.1038/ni.2534 BerninkJH PetersCP MunnekeM 2013 Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues Nat Immunol 14 221 229 https://doi.org/10.1038/ni.2534 Search in Google Scholar

Bjørkøy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614. https://doi.org/10.1083/jcb.200507002 BjørkøyG LamarkT BrechA 2005 p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death J Cell Biol 171 603 614 https://doi.org/10.1083/jcb.200507002 Search in Google Scholar

Bocheńska K, Moskot M, Malinowska M et al (2019) Lysosome alterations in the human epithelial cell line hacat and skin specimens: Relevance to psoriasis. Int J Mol Sci 20:225. https://doi.org/10.3390/ijms20092255 BocheńskaK MoskotM MalinowskaM 2019 Lysosome alterations in the human epithelial cell line hacat and skin specimens: Relevance to psoriasis Int J Mol Sci 20 225 https://doi.org/10.3390/ijms20092255 Search in Google Scholar

Bonam SR, Wang F, Muller S (2019) Lysosomes as a therapeutic target. Nat Rev Drug Discov 18:923–948. https://doi.org/10.1038/s41573-019-0036-1 BonamSR WangF MullerS 2019 Lysosomes as a therapeutic target Nat Rev Drug Discov 18 923 948 https://doi.org/10.1038/s41573-019-0036-1 Search in Google Scholar

Botbol Y, Macian F (2015) Assays for monitoring macroautophagy activity in T cells. Methods Mol Biol 1343:143–53. https://doi.org/10.1007/978-1-4939-2963-4_12 BotbolY MacianF 2015 Assays for monitoring macroautophagy activity in T cells Methods Mol Biol 1343 143 53 https://doi.org/10.1007/978-1-4939-2963-4_12 Search in Google Scholar

Botbol Y, Patel B, Macian F (2015) Common γ-chain cytokine signaling is required for macroautophagy induction during CD4+ T-cell activation. Autophagy 11:1864–1877. https://doi.org/10.1080/15548627.2015.1089374 BotbolY PatelB MacianF 2015 Common γ-chain cytokine signaling is required for macroautophagy induction during CD4+ T-cell activation Autophagy 11 1864 1877 https://doi.org/10.1080/15548627.2015.1089374 Search in Google Scholar

Boyman O, Hefti HP, Conrad C et al (2004) Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J Exp Med 199:731–736. https://doi.org/10.1084/jem.20031482 BoymanO HeftiHP ConradC 2004 Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α J Exp Med 199 731 736 https://doi.org/10.1084/jem.20031482 Search in Google Scholar

Brady OA, Martina JA, Puertollano R (2018) Emerging roles for TFEB in the immune response and inflammation. Autophagy 14:181–189. https://doi.org/10.1080/15548627.2017.1313943 BradyOA MartinaJA PuertollanoR 2018 Emerging roles for TFEB in the immune response and inflammation Autophagy 14 181 189 https://doi.org/10.1080/15548627.2017.1313943 Search in Google Scholar

Brauchli YB, Jick SS, Curtin F et al (2008) Association between beta-blockers, other antihypertensive drugs and psoriasis: Population-based case-control study. Br J Dermatol 158: 1299–1307. https://doi.org/10.1111/j.1365-2133.2008.08563.x BrauchliYB JickSS CurtinF 2008 Association between beta-blockers, other antihypertensive drugs and psoriasis: Population-based case-control study Br J Dermatol 158 1299 1307 https://doi.org/10.1111/j.1365-2133.2008.08563.x Search in Google Scholar

Bronietzki AW, Schuster M, Schmitz I (2015) Autophagy in T-cell development, activation and differentiation. Immunol Cell Biol 93:25–34. https://doi.org/10.1038/icb.2014.81 BronietzkiAW SchusterM SchmitzI 2015 Autophagy in T-cell development, activation and differentiation Immunol Cell Biol 93 25 34 https://doi.org/10.1038/icb.2014.81 Search in Google Scholar

Buerger C (2018) Epidermal mTORC1 signaling contributes to the pathogenesis of psoriasis and could serve as a therapeutic target. Front Immunol 9:2786. https://doi.org/10.3389/fimmu.2018.02786 BuergerC 2018 Epidermal mTORC1 signaling contributes to the pathogenesis of psoriasis and could serve as a therapeutic target Front Immunol 9 2786 https://doi.org/10.3389/fimmu.2018.02786 Search in Google Scholar

Bugaut H, Aractingi S (2021) Major role of the IL17/23 axis in psoriasis supports the development of new targeted therapies. Front Immunol 12:621956. https://doi.org/10.3389/fimmu.2021.621956 BugautH AractingiS 2021 Major role of the IL17/23 axis in psoriasis supports the development of new targeted therapies Front Immunol 12 621956 https://doi.org/10.3389/fimmu.2021.621956 Search in Google Scholar

Carroll B, Dunlop EA (2017) The lysosome: A crucial hub for AMPK and mTORC1 signalling. Biochem J 474:1453–1466. https://doi.org/10.1042/BCJ20160780 CarrollB DunlopEA 2017 The lysosome: A crucial hub for AMPK and mTORC1 signalling Biochem J 474 1453 1466 https://doi.org/10.1042/BCJ20160780 Search in Google Scholar

Chen Y, Liu X, Zhang Q et al (2023) Arsenic induced autophagy-dependent apoptosis in hippocampal neurons via AMPK/mTOR signaling pathway. Food Chem Toxicol 179:113954. https://doi.org/10.1016/j.fct.2023.113954 ChenY LiuX ZhangQ 2023 Arsenic induced autophagy-dependent apoptosis in hippocampal neurons via AMPK/mTOR signaling pathway Food Chem Toxicol 179 113954 https://doi.org/10.1016/j.fct.2023.113954 Search in Google Scholar

Chiang CC, Cheng WJ, Korinek M et al (2019) Neutrophils in psoriasis. Front Immunol 10:2376. https://doi.org/10.3389/fimmu.2019.02376 ChiangCC ChengWJ KorinekM 2019 Neutrophils in psoriasis Front Immunol 10 2376 https://doi.org/10.3389/fimmu.2019.02376 Search in Google Scholar

Chieosilapatham P, Kiatsurayanon C, Umehara Y et al (2021) Keratinocytes: Innate immune cells in atopic dermatitis. Clin Exp Immunol 204:296–309. https://doi.org/10.1111/cei.13575 ChieosilapathamP KiatsurayanonC UmeharaY 2021 Keratinocytes: Innate immune cells in atopic dermatitis Clin Exp Immunol 204 296 309 https://doi.org/10.1111/cei.13575 Search in Google Scholar

Chung Y, Chang SH, Martinez GJ et al (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587. https://doi.org/10.1016/j.immuni.2009.02.007 ChungY ChangSH MartinezGJ 2009 Critical regulation of early Th17 cell differentiation by interleukin-1 signaling Immunity 30 576 587 https://doi.org/10.1016/j.immuni.2009.02.007 Search in Google Scholar

Cuervo AM, Bergamini E, Brunk UT et al (2005) Autophagy and aging: The importance of maintaining “clean” cells. Autophagy 1:131–240. https://doi.org/10.4161/auto.1.3.2017 CuervoAM BergaminiE BrunkUT 2005 Autophagy and aging: The importance of maintaining “clean” cells Autophagy 1 131 240 https://doi.org/10.4161/auto.1.3.2017 Search in Google Scholar

Cullen PJ, Steinberg F (2018) To degrade or not to degrade: Mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 19:679–696. https://doi.org/10.1038/s41580-018-0053-7 CullenPJ SteinbergF 2018 To degrade or not to degrade: Mechanisms and significance of endocytic recycling Nat Rev Mol Cell Biol 19 679 696 https://doi.org/10.1038/s41580-018-0053-7 Search in Google Scholar

Dai Y, Hu S (2015) Recent insights into the role of autophagy in the pathogenesis of rheumatoid arthritis. Rheumatology 55: 403–410. https://doi.org/10.1093/rheumatology/kev337 DaiY HuS 2015 Recent insights into the role of autophagy in the pathogenesis of rheumatoid arthritis Rheumatology 55 403 410 https://doi.org/10.1093/rheumatology/kev337 Search in Google Scholar

Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L et al (2017) Neutrophil extracellular traps and its implications in inflammation: An overview. Front Immunol 8:81. https://doi.org/10.3389/fimmu.2017.00081 Delgado-RizoV Martínez-GuzmánMA Iñiguez-GutierrezL 2017 Neutrophil extracellular traps and its implications in inflammation: An overview Front Immunol 8 81 https://doi.org/10.3389/fimmu.2017.00081 Search in Google Scholar

Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844. https://doi.org/10.1016/j.immuni.2009.04.014 DelgoffeGM KoleTP ZhengY 2009 The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment Immunity 30 832 844 https://doi.org/10.1016/j.immuni.2009.04.014 Search in Google Scholar

Delgoffe GM, Pollizzi KN, Waickman AT et al (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12:295–303. https://doi.org/10.1038/ni.2005 DelgoffeGM PollizziKN WaickmanAT 2011 The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2 Nat Immunol 12 295 303 https://doi.org/10.1038/ni.2005 Search in Google Scholar

Dengjel J, Schoor O, Fischer R et al (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102:7922–7927. https://doi.org/10.1073/pnas.0501190102 DengjelJ SchoorO FischerR 2005 Autophagy promotes MHC class II presentation of peptides from intracellular source proteins Proc Natl Acad Sci U S A 102 7922 7927 https://doi.org/10.1073/pnas.0501190102 Search in Google Scholar

Deretic V (2021) Autophagy in inflammation, infection, and immunometabolism. Immunity 54:437–453. https://doi.org/10.1016/j.immuni.2021.01.018 DereticV 2021 Autophagy in inflammation, infection, and immunometabolism Immunity 54 437 453 https://doi.org/10.1016/j.immuni.2021.01.018 Search in Google Scholar

Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–549. https://doi.org/10.1016/j.chom.2009.05.016 DereticV LevineB 2009 Autophagy, immunity, and microbial adaptations Cell Host Microbe 5 527 549 https://doi.org/10.1016/j.chom.2009.05.016 Search in Google Scholar

Deretic V, Levine B (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243–251. https://doi.org/10.1080/15548627.2017.1402992 DereticV LevineB 2018 Autophagy balances inflammation in innate immunity Autophagy 14 243 251 https://doi.org/10.1080/15548627.2017.1402992 Search in Google Scholar

Dikic I (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86:193–224. https://doi.org/10.1146/annurev-biochem-061516-044908 DikicI 2017 Proteasomal and autophagic degradation systems Annu Rev Biochem 86 193 224 https://doi.org/10.1146/annurev-biochem-061516-044908 Search in Google Scholar

Dombrowski Y, Peric M, Koglin S et al (2011) Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3:82ra38. https://doi.org/10.1126/scitranslmed.3002001 DombrowskiY PericM KoglinS 2011 Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions Sci Transl Med 3 82ra38 https://doi.org/10.1126/scitranslmed.3002001 Search in Google Scholar

Douroudis K, Kingo K, Traks T et al (2012) Polymorphisms in the ATG16L1 gene are associated with psoriasis vulgaris. Acta Derm Venereol 92:85–87. https://doi.org/10.2340/00015555-1183 DouroudisK KingoK TraksT 2012 Polymorphisms in the ATG16L1 gene are associated with psoriasis vulgaris Acta Derm Venereol 92 85 87 https://doi.org/10.2340/00015555-1183 Search in Google Scholar

Dowling MR, Kan A, Heinzel S et al (2018) Regulatory T cells suppress effector T cell proliferation by limiting division destiny. Front Immunol 9:2461. https://doi.org/10.3389/fimmu.2018.02461 DowlingMR KanA HeinzelS 2018 Regulatory T cells suppress effector T cell proliferation by limiting division destiny Front Immunol 9 2461 https://doi.org/10.3389/fimmu.2018.02461 Search in Google Scholar

Drake KR, Kang M, Kenworthy AK (2010) Nucleocytoplasmic distribution and dynamics of the autophagosome marker EGFP-LC3. PLoS One 5:e9806. https://doi.org/10.1371/journal.pone.0009806 DrakeKR KangM KenworthyAK 2010 Nucleocytoplasmic distribution and dynamics of the autophagosome marker EGFP-LC3 PLoS One 5 e9806 https://doi.org/10.1371/journal.pone.0009806 Search in Google Scholar

Dunphy SE, Sweeney CM, Kelly G et al (2017) Natural killer cells from psoriasis vulgaris patients have reduced levels of cytotoxicity associated degranulation and cytokine production. Clin Immunol 177:43–49. https://doi.org/10.1016/j.clim.2015.10.004 DunphySE SweeneyCM KellyG 2017 Natural killer cells from psoriasis vulgaris patients have reduced levels of cytotoxicity associated degranulation and cytokine production Clin Immunol 177 43 49 https://doi.org/10.1016/j.clim.2015.10.004 Search in Google Scholar

Farag AGA, Hammam MA, Al-Sharaky DR et al (2019) Leucine-rich glioma inactivated 3: A novel keratinocyte-derived melanogenic cytokine in vitiligo patients. An Bras Dermatol 94:434–441. https://doi.org/10.1590/abd1806-4841.20198250 FaragAGA HammamMA Al-SharakyDR 2019 Leucine-rich glioma inactivated 3: A novel keratinocyte-derived melanogenic cytokine in vitiligo patients An Bras Dermatol 94 434 441 https://doi.org/10.1590/abd1806-4841.20198250 Search in Google Scholar

Feng L, Song P, Xu F et al (2019) cis-Khellactone inhibited the proinflammatory macrophages via promoting autophagy to ameliorate imiquimod-induced psoriasis. J Invest Dermatol 139:1946–1956.e3. https://doi.org/10.1016/j.jid.2019.02.021 FengL SongP XuF 2019 cis-Khellactone inhibited the proinflammatory macrophages via promoting autophagy to ameliorate imiquimod-induced psoriasis J Invest Dermatol 139 1946 1956.e3 https://doi.org/10.1016/j.jid.2019.02.021 Search in Google Scholar

Feske S, Okamura H, Hogan PG et al (2003) Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311:1117–1132. https://doi.org/10.1016/j.bbrc.2003.09.174 FeskeS OkamuraH HoganPG 2003 Ca2+/calcineurin signalling in cells of the immune system Biochem Biophys Res Commun 311 1117 1132 https://doi.org/10.1016/j.bbrc.2003.09.174 Search in Google Scholar

Fimia GM, Piacentini M (2010) Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 67:1581–1588. https://doi.org/10.1007/s00018-010-0284-z FimiaGM PiacentiniM 2010 Regulation of autophagy in mammals and its interplay with apoptosis Cell Mol Life Sci 67 1581 1588 https://doi.org/10.1007/s00018-010-0284-z Search in Google Scholar

Fuentes-Duculan J, Suárez-Farĩas M, Zaba LC et al (2010) A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol 130:2412–2422. https://doi.org/10.1038/jid.2010.165 Fuentes-DuculanJ Suárez-FarĩasM ZabaLC 2010 A subpopulation of CD163-positive macrophages is classically activated in psoriasis J Invest Dermatol 130 2412 2422 https://doi.org/10.1038/jid.2010.165 Search in Google Scholar

Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4 GalluzziL VitaleI AaronsonSA 2018 Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018 Cell Death Differ 25 486 541 https://doi.org/10.1038/s41418-017-0012-4 Search in Google Scholar

Ge W, Li D, Gao Y et al (2015) The roles of lysosomes in inflammation and autoimmune diseases. Int Rev Immunol 34:415–431. https://doi.org/10.3109/08830185.2014.936587 GeW LiD GaoY 2015 The roles of lysosomes in inflammation and autoimmune diseases Int Rev Immunol 34 415 431 https://doi.org/10.3109/08830185.2014.936587 Search in Google Scholar

Ge Y, Huang M, Yao YM (2018) Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev 43:38–46. https://doi.org/10.1016/j.cytogfr.2018.07.001 GeY HuangM YaoYM 2018 Autophagy and proinflammatory cytokines: Interactions and clinical implications Cytokine Growth Factor Rev 43 38 46 https://doi.org/10.1016/j.cytogfr.2018.07.001 Search in Google Scholar

Gebhardt T, Wakim LM, Eidsmo L et al (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10:524–530. https://doi.org/10.1038/ni.1718 GebhardtT WakimLM EidsmoL 2009 Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus Nat Immunol 10 524 530 https://doi.org/10.1038/ni.1718 Search in Google Scholar

Gȩgotek A, Domingues P, Skrzydlewska E (2020) Natural exogenous antioxidant defense against changes in human skin fibroblast proteome disturbed by UVA radiation. Oxid Med Cell Longev 2020:3216415. https://doi.org/10.1155/2020/3216415 GȩgotekA DominguesP SkrzydlewskaE 2020 Natural exogenous antioxidant defense against changes in human skin fibroblast proteome disturbed by UVA radiation Oxid Med Cell Longev 2020 3216415 https://doi.org/10.1155/2020/3216415 Search in Google Scholar

Germic N, Frangez Z, Yousefi S et al (2019) Regulation of the innate immune system by autophagy: Monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ 26:715–727. https://doi.org/10.1038/s41418-019-0297-6 GermicN FrangezZ YousefiS 2019 Regulation of the innate immune system by autophagy: Monocytes, macrophages, dendritic cells and antigen presentation Cell Death Differ 26 715 727 https://doi.org/10.1038/s41418-019-0297-6 Search in Google Scholar

Ghoreschi K, Balato A, Enerbäck C et al (2021) Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 397: 754–766. https://doi.org/10.1016/S0140-6736(21)00184-7 GhoreschiK BalatoA EnerbäckC 2021 Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis Lancet 397 754 766 https://doi.org/10.1016/S0140-6736(21)00184-7 Search in Google Scholar

Ghoreschi K, Weigert C, Röcken M (2007) Immunopathogenesis and role of T cells in psoriasis. Clin Dermatol 25:574–580. https://doi.org/10.1016/j.clindermatol.2007.08.012 GhoreschiK WeigertC RöckenM 2007 Immunopathogenesis and role of T cells in psoriasis Clin Dermatol 25 574 580 https://doi.org/10.1016/j.clindermatol.2007.08.012 Search in Google Scholar

Glennon-Alty L, Hackett AP, Chapman EA et al (2018) Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 125:25–35. https://doi.org/10.1016/j.freeradbiomed.2018.03.049 Glennon-AltyL HackettAP ChapmanEA 2018 Neutrophils and redox stress in the pathogenesis of autoimmune disease Free Radic Biol Med 125 25 35 https://doi.org/10.1016/j.freeradbiomed.2018.03.049 Search in Google Scholar

Gliński W, Barszcz D, Janczura E et al (1984) Neutral proteinases and other neutrophil enzymes in psoriasis, and their relation to disease activity. Br J Dermatol 111:147–154. https://doi.org/10.1111/j.1365-2133.1984.tb04037.x GlińskiW BarszczD JanczuraE 1984 Neutral proteinases and other neutrophil enzymes in psoriasis, and their relation to disease activity Br J Dermatol 111 147 154 https://doi.org/10.1111/j.1365-2133.1984.tb04037.x Search in Google Scholar

Golden JB, Groft SG, Squeri MV et al (2015) Chronic psoriatic skin inflammation leads to increased monocyte adhesion and aggregation. J Immunol 195:2006–2018. https://doi.org/10.4049/jimmunol.1402307 GoldenJB GroftSG SqueriMV 2015 Chronic psoriatic skin inflammation leads to increased monocyte adhesion and aggregation J Immunol 195 2006 2018 https://doi.org/10.4049/jimmunol.1402307 Search in Google Scholar

Goldminz AM, Au SC, Kim N et al (2013) NF-κB: An essential transcription factor in psoriasis. J Dermatol Sci 69:89–94. https://doi.org/10.1016/j.jdermsci.2012.11.002 GoldminzAM AuSC KimN 2013 NF-κB: An essential transcription factor in psoriasis J Dermatol Sci 69 89 94 https://doi.org/10.1016/j.jdermsci.2012.11.002 Search in Google Scholar

Grän F, Kerstan A, Serfling E et al (2020) Current developments in the immunology of psoriasis. Yale Biol Med 93:97–110. GränF KerstanA SerflingE 2020 Current developments in the immunology of psoriasis Yale Biol Med 93 97 110 Search in Google Scholar

Gubán B, Vas K, Balog Z et al (2016) Abnormal regulation of fibronectin production by fibroblasts in psoriasis. Br J Dermatol 174:533–541. https://doi.org/10.1111/bjd.14219 GubánB VasK BalogZ 2016 Abnormal regulation of fibronectin production by fibroblasts in psoriasis Br J Dermatol 174 533 541 https://doi.org/10.1111/bjd.14219 Search in Google Scholar

Gunes R, Uysal P, Yalçin B et al (2022) Evaluation of serum progranulin levels in patients with psoriasis: A case-control study. Turkish J Dermatol 16:52. https://doi.org/10.4103/tjd.tjd_67_21 GunesR UysalP YalçinB 2022 Evaluation of serum progranulin levels in patients with psoriasis: A case-control study Turkish J Dermatol 16 52 https://doi.org/10.4103/tjd.tjd_67_21 Search in Google Scholar

Guo J, Tu J, Hu Y et al (2019) Cathepsin G cleaves and activates IL-36γ and promotes the inflammation of psoriasis. Drug Des Devel Ther 13:581–588. https://doi.org/10.2147/DDDT.S194765 GuoJ TuJ HuY 2019 Cathepsin G cleaves and activates IL-36γ and promotes the inflammation of psoriasis Drug Des Devel Ther 13 581 588 https://doi.org/10.2147/DDDT.S194765 Search in Google Scholar

Hailfinger S, Schulze-Osthoff K (2021a) The paracaspase MALT1 in psoriasis. Biol Chem 402:1583–1589. https://doi.org/10.1515/hsz-2021-0250 HailfingerS Schulze-OsthoffK 2021a The paracaspase MALT1 in psoriasis Biol Chem 402 1583 1589 https://doi.org/10.1515/hsz-2021-0250 Search in Google Scholar

Hailfinger S, Schulze-Osthoff K (2021b) Impaired autophagy in psoriasis and atopic dermatitis: A new therapeutic target? J Invest Dermatol 141:2775–2777. https://doi.org/10.1016/j.jid.2021.06.006 HailfingerS Schulze-OsthoffK 2021b Impaired autophagy in psoriasis and atopic dermatitis: A new therapeutic target? J Invest Dermatol 141 2775 2777 https://doi.org/10.1016/j.jid.2021.06.006 Search in Google Scholar

Harris J (2013) Autophagy and IL-1 family cytokines. Front Immunol 4:83. https://doi.org/10.3389/fimmu.2013.00083 HarrisJ 2013 Autophagy and IL-1 family cytokines Front Immunol 4 83 https://doi.org/10.3389/fimmu.2013.00083 Search in Google Scholar

Harris J, De Haro SA, Master SS et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular mycobacterium tuberculosis. Immunity 27:505–517. https://doi.org/10.1016/j.immuni.2007.07.022 HarrisJ De HaroSA MasterSS 2007 T helper 2 cytokines inhibit autophagic control of intracellular mycobacterium tuberculosis Immunity 27 505 517 https://doi.org/10.1016/j.immuni.2007.07.022 Search in Google Scholar

Harris J, Hartman M, Roche C et al (2011) Autophagy controls IL-1β secretion by targeting Pro-IL-1β for degradation. J Biol Chem 286:9587–9597. https://doi.org/10.1074/jbc.M110.202911 HarrisJ HartmanM RocheC 2011 Autophagy controls IL-1β secretion by targeting Pro-IL-1β for degradation J Biol Chem 286 9587 9597 https://doi.org/10.1074/jbc.M110.202911 Search in Google Scholar

Harris J, Lang T, Thomas JPW et al (2017) Autophagy and inflammasomes. Mol Immunol 86:10–15. https://doi.org/10.1016/j.molimm.2017.02.013 HarrisJ LangT ThomasJPW 2017 Autophagy and inflammasomes Mol Immunol 86 10 15 https://doi.org/10.1016/j.molimm.2017.02.013 Search in Google Scholar

Harris KM, Fasano A, Mann DL (2008) Cutting Edge: IL-1 controls the IL-23 response induced by gliadin, the etiologic agent in celiac disease. J Immunol 181:4457–4460. https://doi.org/10.4049/jimmunol.181.7.4457 HarrisKM FasanoA MannDL 2008 Cutting Edge: IL-1 controls the IL-23 response induced by gliadin, the etiologic agent in celiac disease J Immunol 181 4457 4460 https://doi.org/10.4049/jimmunol.181.7.4457 Search in Google Scholar

Hawkes JE, Chan TC, Krueger JG (2017) Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 140:645–653. https://doi.org/10.1016/j.jaci.2017.07.004 HawkesJE ChanTC KruegerJG 2017 Psoriasis pathogenesis and the development of novel targeted immune therapies J Allergy Clin Immunol 140 645 653 https://doi.org/10.1016/j.jaci.2017.07.004 Search in Google Scholar

Hayama Y, Kimura T, Takeda Y et al (2018) Lysosomal protein lamtor1 controls innate immune responses via nuclear translocation of transcription factor EB. J Immunol 200:3790–3800. https://doi.org/10.4049/jimmunol.1701283 HayamaY KimuraT TakedaY 2018 Lysosomal protein lamtor1 controls innate immune responses via nuclear translocation of transcription factor EB J Immunol 200 3790 3800 https://doi.org/10.4049/jimmunol.1701283 Search in Google Scholar

Hayashi M, Yanaba K, Umezawa Y et al (2016) IL-10-producing regulatory B cells are decreased in patients with psoriasis. J Dermatol Sci 81:93–100. https://doi.org/10.1016/j.jdermsci.2015.11.003 HayashiM YanabaK UmezawaY 2016 IL-10-producing regulatory B cells are decreased in patients with psoriasis J Dermatol Sci 81 93 100 https://doi.org/10.1016/j.jdermsci.2015.11.003 Search in Google Scholar

He H, Dang Y, Dai F et al (2003) Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 278:29278–29287. https://doi.org/10.1074/jbc.M303800200 HeH DangY DaiF 2003 Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B J Biol Chem 278 29278 29287 https://doi.org/10.1074/jbc.M303800200 Search in Google Scholar

Henry CM, Sullivan GP, Clancy DM et al (2016) Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep 14:708–722. https://doi.org/10.1016/j.celrep.2015.12.072 HenryCM SullivanGP ClancyDM 2016 Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines Cell Rep 14 708 722 https://doi.org/10.1016/j.celrep.2015.12.072 Search in Google Scholar

Hirai T, Kanda T, Sato K et al (2013) Cathepsin K is involved in development of psoriasis-like skin lesions through TLR-dependent Th17 activation. J Immunol 190:4805–4811. https://doi.org/10.4049/jimmunol.1200901 HiraiT KandaT SatoK 2013 Cathepsin K is involved in development of psoriasis-like skin lesions through TLR-dependent Th17 activation J Immunol 190 4805 4811 https://doi.org/10.4049/jimmunol.1200901 Search in Google Scholar

Hoffmann JHO, Enk AH (2016) Neutrophil extracellular traps in dermatology: Caught in the NET. J Dermatol Sci 84:3–10. https://doi.org/10.1016/j.jdermsci.2016.07.001 HoffmannJHO EnkAH 2016 Neutrophil extracellular traps in dermatology: Caught in the NET J Dermatol Sci 84 3 10 https://doi.org/10.1016/j.jdermsci.2016.07.001 Search in Google Scholar

Hogan PG (2017) Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 63:66–69. https://doi.org/10.1016/j.ceca.2017.01.014 HoganPG 2017 Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion Cell Calcium 63 66 69 https://doi.org/10.1016/j.ceca.2017.01.014 Search in Google Scholar

Holland LKK, Nielsen IØ, Maeda K et al (2020) SnapShot: Lysosomal functions. Cell 181:748–748.e1. https://doi.org/10.1016/j.cell.2020.03.043 HollandLKK Nielsen MaedaK 2020 SnapShot: Lysosomal functions Cell 181 748 748.e1 https://doi.org/10.1016/j.cell.2020.03.043 Search in Google Scholar

Hu SCS, Yu HS, Yen FL et al (2016) Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Sci Rep 6:31119. https://doi.org/10.1038/srep31119 HuSCS YuHS YenFL 2016 Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes Sci Rep 6 31119 https://doi.org/10.1038/srep31119 Search in Google Scholar

Huang K, Chen A, Zhang X et al (2015) Progranulin is preferentially expressed in patients with psoriasis vulgaris and protects mice from psoriasis-like skin inflammation. Immunology 145:279–287. https://doi.org/10.1111/imm.12446 HuangK ChenA ZhangX 2015 Progranulin is preferentially expressed in patients with psoriasis vulgaris and protects mice from psoriasis-like skin inflammation Immunology 145 279 287 https://doi.org/10.1111/imm.12446 Search in Google Scholar

Hubbard VM, Valdor R, Patel B et al (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185:7349–7357. https://doi.org/10.4049/jimmunol.1000576 HubbardVM ValdorR PatelB 2010 Macroautophagy regulates energy metabolism during effector T cell activation J Immunol 185 7349 7357 https://doi.org/10.4049/jimmunol.1000576 Search in Google Scholar

Hunger RE, Sieling PA, Ochoa MT et al (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 113:701–708. https://doi.org/10.1172/JCI200419655 HungerRE SielingPA OchoaMT 2004 Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells J Clin Invest 113 701 708 https://doi.org/10.1172/JCI200419655 Search in Google Scholar

Hwang ST, Nijsten T, Elder JT (2017) Recent highlights in psoriasis research. J Invest Dermatol 137:550–556. https://doi.org/10.1016/j.jid.2016.11.007 HwangST NijstenT ElderJT 2017 Recent highlights in psoriasis research J Invest Dermatol 137 550 556 https://doi.org/10.1016/j.jid.2016.11.007 Search in Google Scholar

Iula L, Keitelman IA, Sabbione F et al (2018) Autophagy mediates interleukin-1β secretion in human neutrophils. Front Immunol 9:269. https://doi.org/10.3389/fimmu.2018.00269 IulaL KeitelmanIA SabbioneF 2018 Autophagy mediates interleukin-1β secretion in human neutrophils Front Immunol 9 269 https://doi.org/10.3389/fimmu.2018.00269 Search in Google Scholar

Jacquel A, Obba S, Boyer L et al (2012) Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119:4527–4531. https://doi.org/10.1182/blood-2011-11-392167 JacquelA ObbaS BoyerL 2012 Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions Blood 119 4527 4531 https://doi.org/10.1182/blood-2011-11-392167 Search in Google Scholar

Jang A, Sharp R, Wang JM et al (2021) Dependence on autophagy for autoreactive memory B cells in the development of pristane-induced lupus. Front Immunol 12:701066. https://doi.org/10.3389/fimmu.2021.701066 JangA SharpR WangJM 2021 Dependence on autophagy for autoreactive memory B cells in the development of pristane-induced lupus Front Immunol 12 701066 https://doi.org/10.3389/fimmu.2021.701066 Search in Google Scholar

Jariwala SP (2007) The role of dendritic cells in the immunopathogenesis of psoriasis. Arch Dermatol Res 299:359–366. https://doi.org/10.1007/s00403-007-0775-4 JariwalaSP 2007 The role of dendritic cells in the immunopathogenesis of psoriasis Arch Dermatol Res 299 359 366 https://doi.org/10.1007/s00403-007-0775-4 Search in Google Scholar

Jeger JL (2020) Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Mol Biol Rep 47:9801–9810. https://doi.org/10.1007/s11033-020-05993-4 JegerJL 2020 Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development Mol Biol Rep 47 9801 9810 https://doi.org/10.1007/s11033-020-05993-4 Search in Google Scholar

Jeong D, Qomaladewi NP, Lee J et al (2020) The role of autophagy in skin fibroblasts, keratinocytes, melanocytes, and epidermal stem cells. J Invest Dermatol 140:1691–1697. https://doi.org/10.1016/j.jid.2019.11.023 JeongD QomaladewiNP LeeJ 2020 The role of autophagy in skin fibroblasts, keratinocytes, melanocytes, and epidermal stem cells J Invest Dermatol 140 1691 1697 https://doi.org/10.1016/j.jid.2019.11.023 Search in Google Scholar

Jia W, He MX, McLeod IX et al (2015) Autophagy regulates T lymphocyte proliferation through selective degradation of the cell-cycle inhibitor CDKN1B/p27Kip1. Autophagy 11:2335–2345. https://doi.org/10.1080/15548627.2015.1110666 JiaW HeMX McLeodIX 2015 Autophagy regulates T lymphocyte proliferation through selective degradation of the cell-cycle inhibitor CDKN1B/p27Kip1 Autophagy 11 2335 2345 https://doi.org/10.1080/15548627.2015.1110666 Search in Google Scholar

Jia W, He YW (2011) Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 186:5313–5322. https://doi.org/10.4049/jimmunol.1002404 JiaW HeYW 2011 Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy J Immunol 186 5313 5322 https://doi.org/10.4049/jimmunol.1002404 Search in Google Scholar

Jia W, Pua HH, Li QJ et al (2011) Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 186:1564–1574. https://doi.org/10.4049/jimmunol.1001822 JiaW PuaHH LiQJ 2011 Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes J Immunol 186 1564 1574 https://doi.org/10.4049/jimmunol.1001822 Search in Google Scholar

Jiang B, Cui Y, Ma X et al (2022) Crosstalk between autophagy inhibitor and salidroside-induced apoptosis: A novel strategy for autophagy-based treatment of hepatocellular cancer. SSRN Electronic J. https://doi.org/10.2139/ssrn.4255541 JiangB CuiY MaX 2022 Crosstalk between autophagy inhibitor and salidroside-induced apoptosis: A novel strategy for autophagy-based treatment of hepatocellular cancer SSRN Electronic J https://doi.org/10.2139/ssrn.4255541 Search in Google Scholar

Johansen C, Kragballe K, Westergaard M et al (2005) The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br J Dermatol 152:37–42. https://doi.org/10.1111/j.1365-2133.2004.06304.x JohansenC KragballeK WestergaardM 2005 The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin Br J Dermatol 152 37 42 https://doi.org/10.1111/j.1365-2133.2004.06304.x Search in Google Scholar

Johansen C, Moeller K, Kragballe K et al (2007) The activity of caspase-1 is increased in lesional psoriatic epidermis. J Invest Dermatol 127:2857–2864. https://doi.org/10.1038/sj.jid.5700922 JohansenC MoellerK KragballeK 2007 The activity of caspase-1 is increased in lesional psoriatic epidermis J Invest Dermatol 127 2857 2864 https://doi.org/10.1038/sj.jid.5700922 Search in Google Scholar

Jonchère B, Bélanger A, Guette C et al (2013) STAT3 as a new autophagy regulator. JAKSTAT 2:e24353. https://doi.org/10.4161/jkst.24353 JonchèreB BélangerA GuetteC 2013 STAT3 as a new autophagy regulator JAKSTAT 2 e24353 https://doi.org/10.4161/jkst.24353 Search in Google Scholar

Kabat AM, Harrison OJ, Riffelmacher T et al (2016) The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife 5:e12444. https://doi.org/10.7554/eLife.12444 KabatAM HarrisonOJ RiffelmacherT 2016 The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation Elife 5 e12444 https://doi.org/10.7554/eLife.12444 Search in Google Scholar

Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728. https://doi.org/10.1093/emboj/19.21.5720 KabeyaY MizushimaN UenoT 2000 LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing EMBO J 19 5720 5728 https://doi.org/10.1093/emboj/19.21.5720 Search in Google Scholar

Kahlert K, Grän F, Muhammad K et al (2019) Aberrant B-cell subsets and immunoglobulin levels in patients with moderate-to-severe psoriasis. Acta Derm Venereol 99:226–227. https://doi.org/10.2340/00015555-3069 KahlertK GränF MuhammadK 2019 Aberrant B-cell subsets and immunoglobulin levels in patients with moderate-to-severe psoriasis Acta Derm Venereol 99 226 227 https://doi.org/10.2340/00015555-3069 Search in Google Scholar

Kamata M, Tada Y (2022) Dendritic cells and macrophages in the pathogenesis of psoriasis. Front Immunol 13:941071. https://doi.org/10.3389/fimmu.2022.941071 KamataM TadaY 2022 Dendritic cells and macrophages in the pathogenesis of psoriasis Front Immunol 13 941071 https://doi.org/10.3389/fimmu.2022.941071 Search in Google Scholar

Kasai M, Tanida I, Ueno T et al (2009) Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. J Immunol 183:7278–7285. https://doi.org/10.4049/jimmunol.0804087 KasaiM TanidaI UenoT 2009 Autophagic compartments gain access to the MHC class II compartments in thymic epithelium J Immunol 183 7278 7285 https://doi.org/10.4049/jimmunol.0804087 Search in Google Scholar

Kim HR, Kang SY, Kim HO et al (2020) Role of aryl hydrocarbon receptor activation and autophagy in psoriasis-related inflammation. Int J Mol Sci 21:2195. https://doi.org/10.3390/ijms21062195 KimHR KangSY KimHO 2020 Role of aryl hydrocarbon receptor activation and autophagy in psoriasis-related inflammation Int J Mol Sci 21 2195 https://doi.org/10.3390/ijms21062195 Search in Google Scholar

Kimura T, Hayama Y, Okuzaki D et al (2022) The Ragulator complex serves as a substrate-specific mTORC1 scaffold in regulating the nuclear translocation of transcription factor EB. J Biol Chem 298:101744. https://doi.org/10.1016/j.jbc.2022.101744 KimuraT HayamaY OkuzakiD 2022 The Ragulator complex serves as a substrate-specific mTORC1 scaffold in regulating the nuclear translocation of transcription factor EB J Biol Chem 298 101744 https://doi.org/10.1016/j.jbc.2022.101744 Search in Google Scholar

Kiyono K, Suzuki HI, Matsuyama H et al (2009) Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69:8844–8852. https://doi.org/10.1158/0008-5472.CAN-08-4401 KiyonoK SuzukiHI MatsuyamaH 2009 Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells Cancer Res 69 8844 8852 https://doi.org/10.1158/0008-5472.CAN-08-4401 Search in Google Scholar

Klapan K, Frangež Ž, Markov N et al (2021) Evidence for lysosomal dysfunction within the epidermis in psoriasis and atopic dermatitis. J Invest Dermatol 141:2838–2848.e4. https://doi.org/10.1016/j.jid.2021.05.016 KlapanK FrangežŽ MarkovN 2021 Evidence for lysosomal dysfunction within the epidermis in psoriasis and atopic dermatitis J Invest Dermatol 141 2838 2848.e4 https://doi.org/10.1016/j.jid.2021.05.016 Search in Google Scholar

Klapan K, Simon D, Karaulov A et al (2022) Autophagy and skin diseases. Front Pharmacol 13:844756. https://doi.org/10.3389/fphar.2022.844756 KlapanK SimonD KaraulovA 2022 Autophagy and skin diseases Front Pharmacol 13 844756 https://doi.org/10.3389/fphar.2022.844756 Search in Google Scholar

Koga T, Hedrich CM, Mizui M et al (2014) CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. J Clin Invest 124:2234–2245. https://doi.org/10.1172/JCI73411 KogaT HedrichCM MizuiM 2014 CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance J Clin Invest 124 2234 2245 https://doi.org/10.1172/JCI73411 Search in Google Scholar

Kopf H, de la Rosa GM, Howard OMZ et al (2007) Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol 7:1819–1824. https://doi.org/10.1016/j.intimp.2007.08.027 KopfH de la RosaGM HowardOMZ 2007 Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells Int Immunopharmacol 7 1819 1824 https://doi.org/10.1016/j.intimp.2007.08.027 Search in Google Scholar

Kovacs JR, Li C, Yang Q et al (2012) Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 19:144–152. https://doi.org/10.1038/cdd.2011.78 KovacsJR LiC YangQ 2012 Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery Cell Death Differ 19 144 152 https://doi.org/10.1038/cdd.2011.78 Search in Google Scholar

Kunz M, Simon JC, Saalbach A (2019) Psoriasis: Obesity and fatty acids. Front Immunol 10:1807. https://doi.org/10.3389/fimmu.2019.01807 KunzM SimonJC SaalbachA 2019 Psoriasis: Obesity and fatty acids Front Immunol 10 1807 https://doi.org/10.3389/fimmu.2019.01807 Search in Google Scholar

Lan YJ, Sam NB, Cheng MH et al (2021) Progranulin as a potential therapeutic target in immune-mediated diseases. J Inflamm Res 14:6543–6556. https://doi.org/10.2147/JIR.S339254 LanYJ SamNB ChengMH 2021 Progranulin as a potential therapeutic target in immune-mediated diseases J Inflamm Res 14 6543 6556 https://doi.org/10.2147/JIR.S339254 Search in Google Scholar

Lee HM, Shin DM, Yuk JM et al (2011) Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol 186:1248–1258. https://doi.org/10.4049/jimmunol.1001954 LeeHM ShinDM YukJM 2011 Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1 J Immunol 186 1248 1258 https://doi.org/10.4049/jimmunol.1001954 Search in Google Scholar

Lee SJ, Desplats P, Sigurdson C et al (2010) Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 6:702–706. https://doi.org/10.1038/nrneurol.2010.145 LeeSJ DesplatsP SigurdsonC 2010 Cell-to-cell transmission of non-prion protein aggregates Nat Rev Neurol 6 702 706 https://doi.org/10.1038/nrneurol.2010.145 Search in Google Scholar

Leidal AM, Levine B, Debnath J (2018) Autophagy and the cell biology of age-related disease. Nat Cell Biol 20:1338–1348. https://doi.org/10.1038/s41556-018-0235-8 LeidalAM LevineB DebnathJ 2018 Autophagy and the cell biology of age-related disease Nat Cell Biol 20 1338 1348 https://doi.org/10.1038/s41556-018-0235-8 Search in Google Scholar

Li C, Capan E, Zhao Y et al (2006) Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol 177:5163–5168. https://doi.org/10.4049/jimmunol.177.8.5163 LiC CapanE ZhaoY 2006 Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death J Immunol 177 5163 5168 https://doi.org/10.4049/jimmunol.177.8.5163 Search in Google Scholar

Li L, Chen X, Gu H (2016) The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget 7:50682–50697. https://doi.org/10.18632/oncotarget.9330 LiL ChenX GuH 2016 The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases Oncotarget 7 50682 50697 https://doi.org/10.18632/oncotarget.9330 Search in Google Scholar

Li L, Friedrichsen HJ, Andrews S et al (2018) A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nat Commun 9:2685. https://doi.org/10.1038/s41467-018-04849-7 LiL FriedrichsenHJ AndrewsS 2018 A TFEB nuclear export signal integrates amino acid supply and glucose availability Nat Commun 9 2685 https://doi.org/10.1038/s41467-018-04849-7 Search in Google Scholar

Li L, Lu H, Zhang Y et al (2022) Effect of azelaic acid on psoriasis progression investigated based on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Clin Cosmet Investig Dermatol 15:2523–2534. https://doi.org/10.2147/CCID.S389760 LiL LuH ZhangY 2022 Effect of azelaic acid on psoriasis progression investigated based on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway Clin Cosmet Investig Dermatol 15 2523 2534 https://doi.org/10.2147/CCID.S389760 Search in Google Scholar

Liang X, de Vera ME, Buchser WJ et al (2012) Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res 72:2791–2801. https://doi.org/10.1158/0008-5472.CAN-12-0320 LiangX de VeraME BuchserWJ 2012 Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression Cancer Res 72 2791 2801 https://doi.org/10.1158/0008-5472.CAN-12-0320 Search in Google Scholar

Liu CJ, Bosch X (2012) Progranulin: A growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther 133:124–132. https://doi.org/10.1016/j.pharmthera.2011.10.003 LiuCJ BoschX 2012 Progranulin: A growth factor, a novel TNFR ligand and a drug target Pharmacol Ther 133 124 132 https://doi.org/10.1016/j.pharmthera.2011.10.003 Search in Google Scholar

Liu K, Zhao E, Ilyas G et al (2015) Impaired macrophage autophagy increases the immune response in obese mice by promoting pro-inflammatory macrophage polarization. Autophagy 11:271–284. https://doi.org/10.1080/15548627.2015.1009787 LiuK ZhaoE IlyasG 2015 Impaired macrophage autophagy increases the immune response in obese mice by promoting pro-inflammatory macrophage polarization Autophagy 11 271 284 https://doi.org/10.1080/15548627.2015.1009787 Search in Google Scholar

Lo CH, Zeng J (2023) Defective lysosomal acidification: A new prognostic marker and therapeutic target for neurodegenerative diseases. Transl Neurodegener 12:29. https://doi.org/10.1186/s40035-023-00362-0 LoCH ZengJ 2023 Defective lysosomal acidification: A new prognostic marker and therapeutic target for neurodegenerative diseases Transl Neurodegener 12 29 https://doi.org/10.1186/s40035-023-00362-0 Search in Google Scholar

Loi M, Müller A, Steinbach K et al (2016) Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8+ T cell responses. Cell Rep 15:1076–1087. https://doi.org/10.1016/j.celrep.2016.04.002 LoiM MüllerA SteinbachK 2016 Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8+ T cell responses Cell Rep 15 1076 1087 https://doi.org/10.1016/j.celrep.2016.04.002 Search in Google Scholar

Lu J, Ding Y, Yi X et al (2016) CD19+ B cell subsets in the peripheral blood and skin lesions of psoriasis patients and their correlations with disease severity. Braz J Med Biol Res 49:e5374. https://doi.org/10.1590/1414-431X20165374 LuJ DingY YiX 2016 CD19+ B cell subsets in the peripheral blood and skin lesions of psoriasis patients and their correlations with disease severity Braz J Med Biol Res 49 e5374 https://doi.org/10.1590/1414-431X20165374 Search in Google Scholar

Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: Fusion and function. Nat Rev Mol Cell Biol 8:622–632. https://doi.org/10.1038/nrm2217 LuzioJP PryorPR BrightNA 2007 Lysosomes: Fusion and function Nat Rev Mol Cell Biol 8 622 632 https://doi.org/10.1038/nrm2217 Search in Google Scholar

Lynde CW, Poulin Y, Vender R et al (2014) Interleukin 17A: Toward a new understanding of psoriasis pathogenesis. J Am Acad Dermatol 71:141–150. https://doi.org/10.1016/j.jaad.2013.12.036 LyndeCW PoulinY VenderR 2014 Interleukin 17A: Toward a new understanding of psoriasis pathogenesis J Am Acad Dermatol 71 141 150 https://doi.org/10.1016/j.jaad.2013.12.036 Search in Google Scholar

Mahanty S, Dakappa SS, Shariff R et al (2019) Keratinocyte differentiation promotes ER stress-dependent lysosome biogenesis. Cell Death Dis 10:269. https://doi.org/10.1038/s41419-019-1478-4 MahantyS DakappaSS ShariffR 2019 Keratinocyte differentiation promotes ER stress-dependent lysosome biogenesis Cell Death Dis 10 269 https://doi.org/10.1038/s41419-019-1478-4 Search in Google Scholar

Mahil SK, Twelves S, Farkas K et al (2016) AP1S3 IL-36 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating production. J Invest Dermatol 136: 2251–2259. https://doi.org/10.1016/j.jid.2016.06.618 MahilSK TwelvesS FarkasK 2016 AP1S3 IL-36 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating production J Invest Dermatol 136 2251 2259 https://doi.org/10.1016/j.jid.2016.06.618 Search in Google Scholar

Marble DJ, Gordon KB, Nickoloff BJ (2007) Targeting TNFα rapidly reduces density of dendritic cells and macrophages in psoriatic plaques with restoration of epidermal keratinocyte differentiation. J Dermatol Sci 48:87–101. https://doi.org/10.1016/j.jdermsci.2007.06.006 MarbleDJ GordonKB NickoloffBJ 2007 Targeting TNFα rapidly reduces density of dendritic cells and macrophages in psoriatic plaques with restoration of epidermal keratinocyte differentiation J Dermatol Sci 48 87 101 https://doi.org/10.1016/j.jdermsci.2007.06.006 Search in Google Scholar

Mariño G, Niso-Santano M, Baehrecke EH et al (2014) Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735 MariñoG Niso-SantanoM BaehreckeEH 2014 Self-consumption: The interplay of autophagy and apoptosis Nat Rev Mol Cell Biol 15 81 94 https://doi.org/10.1038/nrm3735 Search in Google Scholar

Marzano AV, Damiani G, Genovese G et al (2018) A dermatologic perspective on autoinflammatory diseases. Clin Exp Rheumatol 36:32–38. MarzanoAV DamianiG GenoveseG 2018 A dermatologic perspective on autoinflammatory diseases Clin Exp Rheumatol 36 32 38 Search in Google Scholar

Matsuzawa Y, Oshima S, Takahara M et al (2015) TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 11:1052–1062. https://doi.org/10.1080/15548627.2015.1055439 MatsuzawaY OshimaS TakaharaM 2015 TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy Autophagy 11 1052 1062 https://doi.org/10.1080/15548627.2015.1055439 Search in Google Scholar

Mavropoulos A, Varna A, Zafiriou E et al (2017) IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNγ-producing T cells. Clin Immunol 184:33–41. https://doi.org/10.1016/j.clim.2017.04.010 MavropoulosA VarnaA ZafiriouE 2017 IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNγ-producing T cells Clin Immunol 184 33 41 https://doi.org/10.1016/j.clim.2017.04.010 Search in Google Scholar

Medina DL, di Paola S, Peluso I et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299. https://doi.org/10.1038/ncb3114 MedinaDL di PaolaS PelusoI 2015 Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB Nat Cell Biol 17 288 299 https://doi.org/10.1038/ncb3114 Search in Google Scholar

Mercurio L, Albanesi C, Madonna S (2021) Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders. Front Med 8:665647. https://doi.org/10.3389/fmed.2021.665647 MercurioL AlbanesiC MadonnaS 2021 Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders Front Med 8 665647 https://doi.org/10.3389/fmed.2021.665647 Search in Google Scholar

Merkley SD, Chock CJ, Yang XO et al (2018) Modulating T cell responses via autophagy: The intrinsic influence controlling the function of both antigen-presenting cells and T cells. Front Immunol 9:2914. https://doi.org/10.3389/fimmu.2018.02914 MerkleySD ChockCJ YangXO 2018 Modulating T cell responses via autophagy: The intrinsic influence controlling the function of both antigen-presenting cells and T cells Front Immunol 9 2914 https://doi.org/10.3389/fimmu.2018.02914 Search in Google Scholar

Mintern JD, Macri C, Chin WJ et al (2015) Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy 11:906–917. https://doi.org/10.1080/15548627.2015.1045178 MinternJD MacriC ChinWJ 2015 Differential use of autophagy by primary dendritic cells specialized in cross-presentation Autophagy 11 906 917 https://doi.org/10.1080/15548627.2015.1045178 Search in Google Scholar

Mitra A, Raychaudhuri SK, Raychaudhuri SP (2012) IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 60:38–42. https://doi.org/10.1016/j.cyto.2012.06.316 MitraA RaychaudhuriSK RaychaudhuriSP 2012 IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade Cytokine 60 38 42 https://doi.org/10.1016/j.cyto.2012.06.316 Search in Google Scholar

Mocholi E, Dowling SD, Botbol Y et al (2018) Autophagy is a tolerance-avoidance mechanism that modulates TCR-mediated signaling and cell metabolism to prevent induction of T cell anergy. Cell Rep 24:1136–1150. https://doi.org/10.1016/j.celrep.2018.06.065 MocholiE DowlingSD BotbolY 2018 Autophagy is a tolerance-avoidance mechanism that modulates TCR-mediated signaling and cell metabolism to prevent induction of T cell anergy Cell Rep 24 1136 1150 https://doi.org/10.1016/j.celrep.2018.06.065 Search in Google Scholar

Monteleon CL, Agnihotri T, Dahal A et al (2018) Lysosomes support the degradation, signaling, and mitochondrial metabolism necessary for human epidermal differentiation. J Invest Dermatol 138:1945–1954. https://doi.org/10.1016/j.jid.2018.02.035 MonteleonCL AgnihotriT DahalA 2018 Lysosomes support the degradation, signaling, and mitochondrial metabolism necessary for human epidermal differentiation J Invest Dermatol 138 1945 1954 https://doi.org/10.1016/j.jid.2018.02.035 Search in Google Scholar

Moos S, Mohebiany AN, Waisman A et al (2019) Imiquimod-induced psoriasis in mice depends on the IL-17 signaling of keratinocytes. J Invest Dermatol 139:1110–1117. https://doi.org/10.1016/j.jid.2019.01.006 MoosS MohebianyAN WaismanA 2019 Imiquimod-induced psoriasis in mice depends on the IL-17 signaling of keratinocytes J Invest Dermatol 139 1110 1117 https://doi.org/10.1016/j.jid.2019.01.006 Search in Google Scholar

Müller G, Lübow C, Weindl G (2020) Lysosomotropic beta blockers induce oxidative stress and IL23A production in Langerhans cells. Autophagy 16:1380–1395. https://doi.org/10.1080/15548627.2019.1686728 MüllerG LübowC WeindlG 2020 Lysosomotropic beta blockers induce oxidative stress and IL23A production in Langerhans cells Autophagy 16 1380 1395 https://doi.org/10.1080/15548627.2019.1686728 Search in Google Scholar

Murera D, Arbogast F, Arnold J et al (2018) CD4 T cell autophagy is integral to memory maintenance. Sci Rep 8:5951. https://doi.org/10.1038/s41598-018-23993-0 MureraD ArbogastF ArnoldJ 2018 CD4 T cell autophagy is integral to memory maintenance Sci Rep 8 5951 https://doi.org/10.1038/s41598-018-23993-0 Search in Google Scholar

Mutua V, Gershwin LJ (2021) A review of neutrophil extracellular traps (NETs) in disease: Potential anti-NETs therapeutics. Clin Rev Allergy Immunol 61:194–211. https://doi.org/10.1007/s12016-020-08804-7 MutuaV GershwinLJ 2021 A review of neutrophil extracellular traps (NETs) in disease: Potential anti-NETs therapeutics Clin Rev Allergy Immunol 61 194 211 https://doi.org/10.1007/s12016-020-08804-7 Search in Google Scholar

Nabar NR, Heijjer CN, Shi CS et al (2022) LRRK2 is required for CD38-mediated NAADP-Ca2+ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells. Autophagy 18:204–222. https://doi.org/10.1080/15548627.2021.1954779 NabarNR HeijjerCN ShiCS 2022 LRRK2 is required for CD38-mediated NAADP-Ca2+ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells Autophagy 18 204 222 https://doi.org/10.1080/15548627.2021.1954779 Search in Google Scholar

Nada EA, Muhammad EMS, Ahmed SFM et al (2020) Assessment of the effect of metabolic syndrome on the autophagy marker lc3 in psoriasis vulgaris patients: A cross-sectional study. Clin Cosmet Investig Dermatol 13:1005–1013. https://doi.org/10.2147/CCID.S284300 NadaEA MuhammadEMS AhmedSFM 2020 Assessment of the effect of metabolic syndrome on the autophagy marker lc3 in psoriasis vulgaris patients: A cross-sectional study Clin Cosmet Investig Dermatol 13 1005 1013 https://doi.org/10.2147/CCID.S284300 Search in Google Scholar

Napoletano F, Baron O, Vandenabeele P et al (2019) Intersections between regulated cell death and autophagy. Trends Cell Biol 29:323–338. https://doi.org/10.1016/j.tcb.2018.12.007 NapoletanoF BaronO VandenabeeleP 2019 Intersections between regulated cell death and autophagy Trends Cell Biol 29 323 338 https://doi.org/10.1016/j.tcb.2018.12.007 Search in Google Scholar

Napolitano G, di Malta C, Ballabio A (2022) Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol 32:920–931 https://doi.org/10.1016/j.tcb.2022.04.012 NapolitanoG di MaltaC BallabioA 2022 Non-canonical mTORC1 signaling at the lysosome Trends Cell Biol 32 920 931 https://doi.org/10.1016/j.tcb.2022.04.012 Search in Google Scholar

Nguyen CTH, Kambe N, Yamazaki F et al (2018) Up-regulated expression of CD86 on circulating intermediate monocytes correlated with disease severity in psoriasis. J Dermatol Sci 90: 135–143. https://doi.org/10.1016/j.jdermsci.2018.01.005 NguyenCTH KambeN YamazakiF 2018 Up-regulated expression of CD86 on circulating intermediate monocytes correlated with disease severity in psoriasis J Dermatol Sci 90 135 143 https://doi.org/10.1016/j.jdermsci.2018.01.005 Search in Google Scholar

Noor AAM, Azlan M, Redzwan NM (2022) Orchestrated cytokines mediated by biologics in psoriasis and its mechanisms of action. Biomedicines 10:498. https://doi.org/10.3390/biomedicines10020498 NoorAAM AzlanM RedzwanNM 2022 Orchestrated cytokines mediated by biologics in psoriasis and its mechanisms of action Biomedicines 10 498 https://doi.org/10.3390/biomedicines10020498 Search in Google Scholar

Ottaviani C, Nasorri F, Bedini C et al (2006) CD56brightCD16-NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol 36: 118–128. https://doi.org/10.1002/eji.200535243 OttavianiC NasorriF BediniC 2006 CD56brightCD16-NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation Eur J Immunol 36 118 128 https://doi.org/10.1002/eji.200535243 Search in Google Scholar

Palmieri M, Pal R, Nelvagal HR et al (2017) MTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 8:14338. https://doi.org/10.1038/ncomms14338 PalmieriM PalR NelvagalHR 2017 MTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases Nat Commun 8 14338 https://doi.org/10.1038/ncomms14338 Search in Google Scholar

Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–2445. https://doi.org/10.1074/jbc.M702824200 PankivS ClausenTH LamarkT 2007 p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy J Biol Chem 282 24131 2445 https://doi.org/10.1074/jbc.M702824200 Search in Google Scholar

Parekh VV, Wu L, Boyd KL et al (2013) Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a t cell-specific deletion of Vps34. J Immunol 190:5086–5101. https://doi.org/10.4049/jimmunol.1202071 ParekhVV WuL BoydKL 2013 Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a t cell-specific deletion of Vps34 J Immunol 190 5086 5101 https://doi.org/10.4049/jimmunol.1202071 Search in Google Scholar

Park JM, Lee DH, Kim DH (2023) Redefining the role of AMPK in autophagy and the energy stress response. Nat Commun 14:2994. https://doi.org/10.1038/s41467-023-38401-z ParkJM LeeDH KimDH 2023 Redefining the role of AMPK in autophagy and the energy stress response Nat Commun 14 2994 https://doi.org/10.1038/s41467-023-38401-z Search in Google Scholar

Pastore N, Brady OA, Diab HI et al (2016) TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 12:1240–1258. https://doi.org/10.1080/15548627.2016.1179405 PastoreN BradyOA DiabHI 2016 TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages Autophagy 12 1240 1258 https://doi.org/10.1080/15548627.2016.1179405 Search in Google Scholar

Patel AB, Tsilioni I, Weng Z et al (2018) TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin. Exp Dermatol 27: 135–143. https://doi.org/10.1111/exd.13461 PatelAB TsilioniI WengZ 2018 TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin Exp Dermatol 27 135 143 https://doi.org/10.1111/exd.13461 Search in Google Scholar

Paushter DH, Du H, Feng T et al (2018) The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol 136:1–17. https://doi.org/10.1007/s00401-018-1861-8 PaushterDH DuH FengT 2018 The lysosomal function of progranulin, a guardian against neurodegeneration Acta Neuropathol 136 1 17 https://doi.org/10.1007/s00401-018-1861-8 Search in Google Scholar

Peeters JGC, de Graeff N, Lotz M et al (2017) Increased autophagy contributes to the inflammatory phenotype of juvenile idiopathic arthritis synovial fluid T cells. Rheumatology 56:1694–1699. https://doi.org/10.1093/rheumatology/kex227 PeetersJGC de GraeffN LotzM 2017 Increased autophagy contributes to the inflammatory phenotype of juvenile idiopathic arthritis synovial fluid T cells Rheumatology 56 1694 1699 https://doi.org/10.1093/rheumatology/kex227 Search in Google Scholar

Pinegin B, Vorobjeva N, Pinegin V (2015) Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev 14:633–640. https://doi.org/10.1016/j.autrev.2015.03.002 PineginB VorobjevaN PineginV 2015 Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity Autoimmun Rev 14 633 640 https://doi.org/10.1016/j.autrev.2015.03.002 Search in Google Scholar

Pivarcsi A, Kemény L, Dobozy A (2004) Innate immune functions of the keratinocytes: A review. Acta Microbiol Immunol Hung 51:303–310. https://doi.org/10.1556/AMicr.51.2004.3.8 PivarcsiA KeményL DobozyA 2004 Innate immune functions of the keratinocytes: A review Acta Microbiol Immunol Hung 51 303 310 https://doi.org/10.1556/AMicr.51.2004.3.8 Search in Google Scholar

Pua HH, Dzhagalov I, Chuck M et al (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31. https://doi.org/10.1084/jem.20061303 PuaHH DzhagalovI ChuckM 2007 A critical role for the autophagy gene Atg5 in T cell survival and proliferation J Exp Med 204 25 31 https://doi.org/10.1084/jem.20061303 Search in Google Scholar

Puertollano R, Ferguson SM, Brugarolas J et al (2018) The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J 37:e98804. https://doi.org/10.15252/embj.201798804 PuertollanoR FergusonSM BrugarolasJ 2018 The complex relationship between TFEB transcription factor phosphorylation and subcellular localization EMBO J 37 e98804 https://doi.org/10.15252/embj.201798804 Search in Google Scholar

Qi Y, Zhou X, Zhang H (2019) Autophagy and immunological aberrations in systemic lupus erythematosus. Eur J Immunol 49: 523–533. https://doi.org/10.1002/eji.201847679 QiY ZhouX ZhangH 2019 Autophagy and immunological aberrations in systemic lupus erythematosus Eur J Immunol 49 523 533 https://doi.org/10.1002/eji.201847679 Search in Google Scholar

Qiu X, Zheng L, Liu X et al (2021) ULK1 inhibition as a targeted therapeutic strategy for psoriasis by regulating keratinocytes and their crosstalk with neutrophils. Front Immunol 12:714274. https://doi.org/10.3389/fimmu.2021.714274 QiuX ZhengL LiuX 2021 ULK1 inhibition as a targeted therapeutic strategy for psoriasis by regulating keratinocytes and their crosstalk with neutrophils Front Immunol 12 714274 https://doi.org/10.3389/fimmu.2021.714274 Search in Google Scholar

Raharja A, Mahil SK, Barker JN (2021) Psoriasis: A brief overview. Clin Med 21:170–173. https://doi.org/10.7861/clinmed.2021-0257 RaharjaA MahilSK BarkerJN 2021 Psoriasis: A brief overview Clin Med 21 170 173 https://doi.org/10.7861/clinmed.2021-0257 Search in Google Scholar

Raza IGA, Clarke AJ (2021) B cell metabolism and autophagy in autoimmunity. Front Immunol 12:681105. https://doi.org/10.3389/fimmu.2021.681105 RazaIGA ClarkeAJ 2021 B cell metabolism and autophagy in autoimmunity Front Immunol 12 681105 https://doi.org/10.3389/fimmu.2021.681105 Search in Google Scholar

Ruckenstuhl C, Netzberger C, Entfellner I et al (2014) Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet 10:e1004347. https://doi.org/10.1371/journal.pgen.1004347 RuckenstuhlC NetzbergerC EntfellnerI 2014 Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification PLoS Genet 10 e1004347 https://doi.org/10.1371/journal.pgen.1004347 Search in Google Scholar

Said A, Bock S, Lajqi T et al (2014) Chloroquine promotes IL-17 production by CD4+ T cells via p38-dependent IL-23 release by monocyte-derived Langerhans-like cells. J Immunol 193: 6135–6143. https://doi.org/10.4049/jimmunol.1303276 SaidA BockS LajqiT 2014 Chloroquine promotes IL-17 production by CD4+ T cells via p38-dependent IL-23 release by monocyte-derived Langerhans-like cells J Immunol 193 6135 6143 https://doi.org/10.4049/jimmunol.1303276 Search in Google Scholar

Saitoh T, Fujita N, Jang MH et al (2008) Loss of the autophagy protein Atg16L1 enhances. Nature 456:264–268. https://doi.org/10.1038/nature07383 SaitohT FujitaN JangMH 2008 Loss of the autophagy protein Atg16L1 enhances Nature 456 264 268 https://doi.org/10.1038/nature07383 Search in Google Scholar

Salazar G, Cullen A, Huang J et al (2020) SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy 16:1092–1110. https://doi.org/10.1080/15548627.2019.1659612 SalazarG CullenA HuangJ 2020 SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence Autophagy 16 1092 1110 https://doi.org/10.1080/15548627.2019.1659612 Search in Google Scholar

Salskov-Iversen ML, Johansen C, Kragballe K et al (2011) Caspase-5 expression is upregulated in lesional psoriatic skin. J Invest Dermatol 131:670–676. https://doi.org/10.1038/jid.2010.370 Salskov-IversenML JohansenC KragballeK 2011 Caspase-5 expression is upregulated in lesional psoriatic skin J Invest Dermatol 131 670 676 https://doi.org/10.1038/jid.2010.370 Search in Google Scholar

Salwa A, Ferraresi A, Secomandi E et al (2023) High BECN1 expression negatively correlates with BCL2 expression and predicts better prognosis in diffuse large B-cell lymphoma: Role of autophagy. Cells 12:1924. https://doi.org/10.3390/cells12151924 SalwaA FerraresiA SecomandiE 2023 High BECN1 expression negatively correlates with BCL2 expression and predicts better prognosis in diffuse large B-cell lymphoma: Role of autophagy Cells 12 1924 https://doi.org/10.3390/cells12151924 Search in Google Scholar

Sánchez-Martín P, Saito T, Komatsu M (2019) p62/SQSTM1: ‘Jack of all trades’ in health and cancer. FEBS J 286:8–23. https://doi.org/10.1111/febs.14712 Sánchez-MartínP SaitoT KomatsuM 2019 p62/SQSTM1: ‘Jack of all trades’ in health and cancer FEBS J 286 8 23 https://doi.org/10.1111/febs.14712 Search in Google Scholar

Sandoval H, Kodali S, Wang J (2018) Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion 41:58–65. https://doi.org/10.1016/j.mito.2017.11.005 SandovalH KodaliS WangJ 2018 Regulation of B cell fate, survival, and function by mitochondria and autophagy Mitochondrion 41 58 65 https://doi.org/10.1016/j.mito.2017.11.005 Search in Google Scholar

Schmid D, Pypaert M, Münz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92. https://doi.org/10.1016/j.immuni.2006.10.018 SchmidD PypaertM MünzC 2007 Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes Immunity 26 79 92 https://doi.org/10.1016/j.immuni.2006.10.018 Search in Google Scholar

Schober R, Waldherr L, Schmidt T et al (2019) STIM1 and Orai1 regulate Ca2+ microdomains for activation of transcription. Biochim Biophys Acta Mol Cell Res 1866:1079–1091. https://doi.org/10.1016/j.bbamcr.2018.11.001 SchoberR WaldherrL SchmidtT 2019 STIM1 and Orai1 regulate Ca2+ microdomains for activation of transcription Biochim Biophys Acta Mol Cell Res 1866 1079 1091 https://doi.org/10.1016/j.bbamcr.2018.11.001 Search in Google Scholar

Schönefuß A, Wendt W, Schattling B et al (2010) Upregulation of cathepsin S in psoriatic keratinocytes. Exp Dermatol 19:e80–88. https://doi.org/10.1111/j.1600-0625.2009.00990.x SchönefußA WendtW SchattlingB 2010 Upregulation of cathepsin S in psoriatic keratinocytes Exp Dermatol 19 e80 88 https://doi.org/10.1111/j.1600-0625.2009.00990.x Search in Google Scholar

Scotto Rosato A, Montefusco S, Soldati C et al (2019) TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat Commun 10:5630. https://doi.org/10.1038/s41467-019-13572-w Scotto RosatoA MontefuscoS SoldatiC 2019 TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway Nat Commun 10 5630 https://doi.org/10.1038/s41467-019-13572-w Search in Google Scholar

Serrano-Puebla A, Boya P (2018) Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans 46:207–215. https://doi.org/10.1042/BST20170130 Serrano-PueblaA BoyaP 2018 Lysosomal membrane permeabilization as a cell death mechanism in cancer cells Biochem Soc Trans 46 207 215 https://doi.org/10.1042/BST20170130 Search in Google Scholar

Settembre C, de Cegli R, Mansueto G et al (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15:647–658. https://doi.org/10.1038/ncb2718 SettembreC de CegliR MansuetoG 2013 TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop Nat Cell Biol 15 647 658 https://doi.org/10.1038/ncb2718 Search in Google Scholar

Settembre C, di Malta C, Polito VA et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. https://doi.org/10.1126/science.1204592 SettembreC di MaltaC PolitoVA 2011 TFEB links autophagy to lysosomal biogenesis Science 332 1429 1433 https://doi.org/10.1126/science.1204592 Search in Google Scholar

Sheir HS, Badr EA, Hodeib AA et al (2022) Progranulin/tumor necrosis factor-alpha ratio in psoriasis vulgaris. J Adv Med Med Res 34:93–99. https://doi.org/10.9734/jammr/2022/v34i1831433 SheirHS BadrEA HodeibAA 2022 Progranulin/tumor necrosis factor-alpha ratio in psoriasis vulgaris J Adv Med Med Res 34 93 99 https://doi.org/10.9734/jammr/2022/v34i1831433 Search in Google Scholar

Shen P, Fillatreau S (2015) Suppressive functions of B cells in infectious diseases. Int Immunol 27:513–519. https://doi.org/10.1093/intimm/dxv037 ShenP FillatreauS 2015 Suppressive functions of B cells in infectious diseases Int Immunol 27 513 519 https://doi.org/10.1093/intimm/dxv037 Search in Google Scholar

Shi CS, Kehrl JH (2010) TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 3:ra42. https://doi.org/10.1126/scisignal.2000751 ShiCS KehrlJH 2010 TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy Sci Signal 3 ra42 https://doi.org/10.1126/scisignal.2000751 Search in Google Scholar

Sil P, Wong SW, Martinez J (2018) More than skin deep: Autophagy is vital for skin barrier function. Front Immunol 9:1376. https://doi.org/10.3389/fimmu.2018.01376 SilP WongSW MartinezJ 2018 More than skin deep: Autophagy is vital for skin barrier function Front Immunol 9 1376 https://doi.org/10.3389/fimmu.2018.01376 Search in Google Scholar

Singh TP, Zhang HH, Borek I et al (2016) Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat Commun 7:13581. https://doi.org/10.1038/ncomms13581 SinghTP ZhangHH BorekI 2016 Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation Nat Commun 7 13581 https://doi.org/10.1038/ncomms13581 Search in Google Scholar

Slade L, Pulinilkunnil T (2017) The MiTF/TFE family of transcription factors: Master regulators of organelle signaling, metabolism, and stress adaptation. Mol Cancer Res 15:1637–1643. https://doi.org/10.1158/1541-7786.MCR-17-0320 SladeL PulinilkunnilT 2017 The MiTF/TFE family of transcription factors: Master regulators of organelle signaling, metabolism, and stress adaptation Mol Cancer Res 15 1637 1643 https://doi.org/10.1158/1541-7786.MCR-17-0320 Search in Google Scholar

Song R, Li J, Zhang J et al (2017) Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif. Biochimie 142:158–167. https://doi.org/10.1016/j.biochi.2017.09.002 SongR LiJ ZhangJ 2017 Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif Biochimie 142 158 167 https://doi.org/10.1016/j.biochi.2017.09.002 Search in Google Scholar

Stockinger B, Veldhoen M, Martin B (2007) Th17 T cells: Linking innate and adaptive immunity. Semin Immunol 19:353–361. https://doi.org/10.1016/j.smim.2007.10.008 StockingerB VeldhoenM MartinB 2007 Th17 T cells: Linking innate and adaptive immunity Semin Immunol 19 353 361 https://doi.org/10.1016/j.smim.2007.10.008 Search in Google Scholar

Sun W, Zheng Y, Lu Z et al (2014) Overexpression of S100A7 protects LPS-induced mitochondrial dysfunction and stimulates IL-6 and IL-8 in HaCaT cells. PLoS One 9:e92927. https://doi.org/10.1371/journal.pone.0092927 SunW ZhengY LuZ 2014 Overexpression of S100A7 protects LPS-induced mitochondrial dysfunction and stimulates IL-6 and IL-8 in HaCaT cells PLoS One 9 e92927 https://doi.org/10.1371/journal.pone.0092927 Search in Google Scholar

Tang W, Lu Y, Tian QY et al (2011) The growth factor progranulin binds to tnf receptors and is therapeutic against inflammatory arthritis in mice. Science 332:478–484. https://doi.org/10.1126/science.1199214 TangW LuY TianQY 2011 The growth factor progranulin binds to tnf receptors and is therapeutic against inflammatory arthritis in mice Science 332 478 484 https://doi.org/10.1126/science.1199214 Search in Google Scholar

Tang ZL, Zhang K, Lv SC et al (2021) LncRNA MEG3 suppresses PI3K/AKT/mTOR signalling pathway to enhance autophagy and inhibit inflammation in TNF-α-treated keratinocytes and psoriatic mice. Cytokine 148:155657. https://doi.org/10.1016/j.cyto.2021.155657 TangZL ZhangK LvSC 2021 LncRNA MEG3 suppresses PI3K/AKT/mTOR signalling pathway to enhance autophagy and inhibit inflammation in TNF-α-treated keratinocytes and psoriatic mice Cytokine 148 155657 https://doi.org/10.1016/j.cyto.2021.155657 Search in Google Scholar

Tian R, Li Y, Yao X (2016) PGRN suppresses inflammation and promotes autophagy in keratinocytes through the Wnt/β-catenin signaling pathway. Inflammation 39:1387–1394. https://doi.org/10.1007/s10753-016-0370-y TianR LiY YaoX 2016 PGRN suppresses inflammation and promotes autophagy in keratinocytes through the Wnt/β-catenin signaling pathway Inflammation 39 1387 1394 https://doi.org/10.1007/s10753-016-0370-y Search in Google Scholar

Toruniowa B, Jablońska S (1988) Mast cells in the initial stages of psoriasis. Arch Dermatol Res 280:189–193. https://doi.org/10.1007/BF00513956 ToruniowaB JablońskaS 1988 Mast cells in the initial stages of psoriasis Arch Dermatol Res 280 189 193 https://doi.org/10.1007/BF00513956 Search in Google Scholar

Tsankov N, Angelova I, Kazandjieva J (2000) Drug-induced psoriasis: Recognition and management. Am J Clin Dermatol 1:159–165. https://doi.org/10.2165/00128071-200001030-00003 TsankovN AngelovaI KazandjievaJ 2000 Drug-induced psoriasis: Recognition and management Am J Clin Dermatol 1 159 165 https://doi.org/10.2165/00128071-200001030-00003 Search in Google Scholar

Ushio H, Ueno T, Kojima Y et al (2011) Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol 127: 1267–1276.e6. https://doi.org/10.1016/j.jaci.2010.12.1078 UshioH UenoT KojimaY 2011 Crucial role for autophagy in degranulation of mast cells J Allergy Clin Immunol 127 1267 1276.e6 https://doi.org/10.1016/j.jaci.2010.12.1078 Search in Google Scholar

Valdez C, Wong YC, Schwake M et al (2017) Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet 26: 4861–4872. https://doi.org/10.1093/hmg/ddx364 ValdezC WongYC SchwakeM 2017 Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients Hum Mol Genet 26 4861 4872 https://doi.org/10.1093/hmg/ddx364 Search in Google Scholar

Valladeau J, Ravel O, Dezutter-Dambuyant C et al (2000) Langerin, a novel C-type lectin specific to langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71–81. https://doi.org/10.1016/S1074-7613(00)80160-0 ValladeauJ RavelO Dezutter-DambuyantC 2000 Langerin, a novel C-type lectin specific to langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules Immunity 12 71 81 https://doi.org/10.1016/S1074-7613(00)80160-0 Search in Google Scholar

Varshney P, Saini N (2018) PI3K/AKT/mTOR activation and autophagy inhibition plays a key role in increased cholesterol during IL-17A mediated inflammatory response in psoriasis. Biochim Biophys Acta Mol Basis Dis 1864:1795–1803. https://doi.org/10.1016/j.bbadis.2018.02.003 VarshneyP SainiN 2018 PI3K/AKT/mTOR activation and autophagy inhibition plays a key role in increased cholesterol during IL-17A mediated inflammatory response in psoriasis Biochim Biophys Acta Mol Basis Dis 1864 1795 1803 https://doi.org/10.1016/j.bbadis.2018.02.003 Search in Google Scholar

Vega-Rubin-de-Celis S, Peña-Llopis S, Konda M et al (2017) Multistep regulation of TFEB by MTORC1. Autophagy 13: 464–472. https://doi.org/10.1080/15548627.2016.1271514 Vega-Rubin-de-CelisS Peña-LlopisS KondaM 2017 Multistep regulation of TFEB by MTORC1 Autophagy 13 464 472 https://doi.org/10.1080/15548627.2016.1271514 Search in Google Scholar

Villanova F, Flutter B, Tosi I et al (2014) Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol 134:984–991. https://doi.org/10.1038/jid.2013.477 VillanovaF FlutterB TosiI 2014 Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis J Invest Dermatol 134 984 991 https://doi.org/10.1038/jid.2013.477 Search in Google Scholar

Vomero M, Manganelli V, Barbati C et al (2019) Reduction of autophagy and increase in apoptosis correlates with a favorable clinical outcome in patients with rheumatoid arthritis treated with anti-TNF drugs. Arthritis Res Ther 21:39. https://doi.org/10.1186/s13075-019-1818-x VomeroM ManganelliV BarbatiC 2019 Reduction of autophagy and increase in apoptosis correlates with a favorable clinical outcome in patients with rheumatoid arthritis treated with anti-TNF drugs Arthritis Res Ther 21 39 https://doi.org/10.1186/s13075-019-1818-x Search in Google Scholar

Wang F, Gómez-Sintes R, Boya P (2018) Lysosomal membrane permeabilization and cell death. Traffic 19:918–931. https://doi.org/10.1111/tra.12613 WangF Gómez-SintesR BoyaP 2018 Lysosomal membrane permeabilization and cell death Traffic 19 918 931 https://doi.org/10.1111/tra.12613 Search in Google Scholar

Wang F, Muller S (2015) Manipulating autophagic processes in autoimmune diseases: A special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol 6:252. https://doi.org/10.3389/fimmu.2015.00252 WangF MullerS 2015 Manipulating autophagic processes in autoimmune diseases: A special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target Front Immunol 6 252 https://doi.org/10.3389/fimmu.2015.00252 Search in Google Scholar

Wang J, Kaplan N, Wang S et al (2020) Autophagy plays a positive role in induction of epidermal proliferation. FASEB J 34: 10657–10667. https://doi.org/10.1096/fj.202000770RR WangJ KaplanN WangS 2020 Autophagy plays a positive role in induction of epidermal proliferation FASEB J 34 10657 10667 https://doi.org/10.1096/fj.202000770RR Search in Google Scholar

Wang S, Xia P, Huang G et al (2016) FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat Commun 7:11023. https://doi.org/10.1038/ncomms11023 WangS XiaP HuangG 2016 FoxO1-mediated autophagy is required for NK cell development and innate immunity Nat Commun 7 11023 https://doi.org/10.1038/ncomms11023 Search in Google Scholar

Wang WM, Jin HZ (2020) Role of neutrophils in psoriasis. J Immunol Res 2020:3709749. https://doi.org/10.1155/2020/3709749 WangWM JinHZ 2020 Role of neutrophils in psoriasis J Immunol Res 2020 3709749 https://doi.org/10.1155/2020/3709749 Search in Google Scholar

Wang Y, Edelmayer R, Wetter J et al (2019a) Monocytes/macrophages play a pathogenic role in IL-23 mediated psoriasis-like skin inflammation. Sci Rep 9:5310. https://doi.org/10.1038/s41598-019-41655-7 WangY EdelmayerR WetterJ 2019a Monocytes/macrophages play a pathogenic role in IL-23 mediated psoriasis-like skin inflammation Sci Rep 9 5310 https://doi.org/10.1038/s41598-019-41655-7 Search in Google Scholar

Wang Y, Li Y, Wei F et al (2017) Optical imaging paves the way for autophagy research. Trends Biotechnol 35:1181–1193. https://doi.org/10.1016/j.tibtech.2017.08.006 WangY LiY WeiF 2017 Optical imaging paves the way for autophagy research Trends Biotechnol 35 1181 1193 https://doi.org/10.1016/j.tibtech.2017.08.006 Search in Google Scholar

Wang Y, Wen X, Hao D et al (2019b) Insights into autophagy machinery in cells related to skin diseases and strategies for therapeutic modulation. Biomed Pharmacother 113:108775. https://doi.org/10.1016/j.biopha.2019.108775 WangY WenX HaoD 2019b Insights into autophagy machinery in cells related to skin diseases and strategies for therapeutic modulation Biomed Pharmacother 113 108775 https://doi.org/10.1016/j.biopha.2019.108775 Search in Google Scholar

Wang Z, Zhou H, Zheng H et al (2021) Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation. Autophagy 17:529–552. https://doi.org/10.1080/15548627.2020.1725381 WangZ ZhouH ZhengH 2021 Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation Autophagy 17 529 552 https://doi.org/10.1080/15548627.2020.1725381 Search in Google Scholar

Ward NL, Umetsu DT (2014) A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells. J Invest Dermatol 134:2305–2307. https://doi.org/10.1038/jid.2014.216 WardNL UmetsuDT 2014 A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells J Invest Dermatol 134 2305 2307 https://doi.org/10.1038/jid.2014.216 Search in Google Scholar

Wei J, Long L, Yang K et al (2016) Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 17:277–285. https://doi.org/10.1038/ni.3365 WeiJ LongL YangK 2016 Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis Nat Immunol 17 277 285 https://doi.org/10.1038/ni.3365 Search in Google Scholar

Weindel CG, Richey LJ, Bolland S et al (2015) B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 11:1010–1024. https://doi.org/10.1080/15548627.2015.1052206 WeindelCG RicheyLJ BollandS 2015 B cell autophagy mediates TLR7-dependent autoimmunity and inflammation Autophagy 11 1010 1024 https://doi.org/10.1080/15548627.2015.1052206 Search in Google Scholar

Wenger T, Terawaki S, Camosseto V et al (2012) Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 8:350–363. https://doi.org/10.4161/auto.18806 WengerT TerawakiS CamossetoV 2012 Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation Autophagy 8 350 363 https://doi.org/10.4161/auto.18806 Search in Google Scholar

Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870. https://doi.org/10.1152/physrev.2003.83.3.835 WernerS GroseR 2003 Regulation of wound healing by growth factors and cytokines Physiol Rev 83 835 870 https://doi.org/10.1152/physrev.2003.83.3.835 Search in Google Scholar

Willinger T, Flavell RA (2012) Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc Natl Acad Sci U S A 109:8670–8675. https://doi.org/10.1073/pnas.1205305109 WillingerT FlavellRA 2012 Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis Proc Natl Acad Sci U S A 109 8670 8675 https://doi.org/10.1073/pnas.1205305109 Search in Google Scholar

Wu X, Eisenman RN (2021) MYC and TFEB control DNA methylation and differentiation in AML. Cancer Discov 2:116–118. https://doi.org/10.1158/2643-3230.BCD-20-0230 WuX EisenmanRN 2021 MYC and TFEB control DNA methylation and differentiation in AML Cancer Discov 2 116 118 https://doi.org/10.1158/2643-3230.BCD-20-0230 Search in Google Scholar

Xue K, Shao S, Fang H et al (2022) Adipocyte-derived CTRP3 exhibits anti-inflammatory effects via LAMP1-STAT3 axis in psoriasis. J Invest Dermatol 142:1349–1359.e8. https://doi.org/10.1016/j.jid.2021.09.027 XueK ShaoS FangH 2022 Adipocyte-derived CTRP3 exhibits anti-inflammatory effects via LAMP1-STAT3 axis in psoriasis J Invest Dermatol 142 1349 1359.e8 https://doi.org/10.1016/j.jid.2021.09.027 Search in Google Scholar

Yadati T, Houben T, Bitorina A et al (2020) The ins and outs of cathepsins: Physiological function and role in disease management. Cells 9:1679. https://doi.org/10.3390/cells9071679 YadatiT HoubenT BitorinaA 2020 The ins and outs of cathepsins: Physiological function and role in disease management Cells 9 1679 https://doi.org/10.3390/cells9071679 Search in Google Scholar

Yin H, Wu H, Chen Y et al (2018) The therapeutic and pathogenic role of autophagy in autoimmune diseases. Front Immunol 9:1512. https://doi.org/10.3389/fimmu.2018.01512 YinH WuH ChenY 2018 The therapeutic and pathogenic role of autophagy in autoimmune diseases Front Immunol 9 1512 https://doi.org/10.3389/fimmu.2018.01512 Search in Google Scholar

Yin Q, Jian Y, Xu M et al (2020) CDK4/6 regulate lysosome biogenesis through TFEB/TFE3. J Cell Biol 219:e201911036. https://doi.org/10.1083/JCB.201911036 YinQ JianY XuM 2020 CDK4/6 regulate lysosome biogenesis through TFEB/TFE3 J Cell Biol 219 e201911036 https://doi.org/10.1083/JCB.201911036 Search in Google Scholar

Yu XJ, Li CY, Dai HY et al (2007) Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp Mol Pathol 83:413–418. https://doi.org/10.1016/j.yexmp.2007.05.002 YuXJ LiCY DaiHY 2007 Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin Exp Mol Pathol 83 413 418 https://doi.org/10.1016/j.yexmp.2007.05.002 Search in Google Scholar

Zhang M, Zhang X (2019) The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res 311:83–91. https://doi.org/10.1007/s00403-018-1879-8 ZhangM ZhangX 2019 The role of PI3K/AKT/FOXO signaling in psoriasis Arch Dermatol Res 311 83 91 https://doi.org/10.1007/s00403-018-1879-8 Search in Google Scholar

Zhang W, Bai J, Hang K et al (2022a) Role of lysosomal acidification dysfunction in mesenchymal stem cell senescence. Front Cell Dev Biol 10:817877. https://doi.org/10.3389/fcell.2022.817877 ZhangW BaiJ HangK 2022a Role of lysosomal acidification dysfunction in mesenchymal stem cell senescence Front Cell Dev Biol 10 817877 https://doi.org/10.3389/fcell.2022.817877 Search in Google Scholar

Zhang X, Li X, Wang Y et al (2022b) Abnormal lipid metabolism in epidermal Langerhans cells mediates psoriasis-like dermatitis. JCI Insight 7:e150223. https://doi.org/10.1172/jci.insight.150223 ZhangX LiX WangY 2022b Abnormal lipid metabolism in epidermal Langerhans cells mediates psoriasis-like dermatitis JCI Insight 7 e150223 https://doi.org/10.1172/jci.insight.150223 Search in Google Scholar

Zhang Y, Shi Y, Lin J et al (2021) Immune cell infiltration analysis demonstrates excessive mast cell activation in psoriasis. Front Immunol 12:773280. https://doi.org/10.3389/fimmu.2021.773280 ZhangY ShiY LinJ 2021 Immune cell infiltration analysis demonstrates excessive mast cell activation in psoriasis Front Immunol 12 773280 https://doi.org/10.3389/fimmu.2021.773280 Search in Google Scholar

Zhou B, Liu J, Kang R et al (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100. https://doi.org/10.1016/j.semcancer.2019.03.002 ZhouB LiuJ KangR 2020 Ferroptosis is a type of autophagy-dependent cell death Semin Cancer Biol 66 89 100 https://doi.org/10.1016/j.semcancer.2019.03.002 Search in Google Scholar

Zhou L, Wang J, Hou H et al (2023) Autophagy inhibits inflammation via down-regulation of p38 MAPK/mTOR signaling cascade in endothelial cells. Clin Cosmet Investig Dermatol 16:659–669. https://doi.org/10.2147/CCID.S405068 ZhouL WangJ HouH 2023 Autophagy inhibits inflammation via down-regulation of p38 MAPK/mTOR signaling cascade in endothelial cells Clin Cosmet Investig Dermatol 16 659 669 https://doi.org/10.2147/CCID.S405068 Search in Google Scholar

Zhou X, Chen Y, Cui L et al (2022) Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis 13:81. https://doi.org/10.1038/s41419-022-04523-3 ZhouX ChenY CuiL 2022 Advances in the pathogenesis of psoriasis: From keratinocyte perspective Cell Death Dis 13 81 https://doi.org/10.1038/s41419-022-04523-3 Search in Google Scholar

Zhou X, Paushter DH, Feng T et al (2017) Regulation of cathepsin D activity by the FTLD protein progranulin. Acta Neuropathol 134:151–153. https://doi.org/10.1007/s00401-017-1719-5 ZhouX PaushterDH FengT 2017 Regulation of cathepsin D activity by the FTLD protein progranulin Acta Neuropathol 134 151 153 https://doi.org/10.1007/s00401-017-1719-5 Search in Google Scholar

Zhou X, Paushter DH, Pagan MD et al (2019) Progranulin deficiency leads to reduced glucocerebrosidase activity. PLoS One 14:e0212382. https://doi.org/10.1371/journal.pone.0212382 ZhouX PaushterDH PaganMD 2019 Progranulin deficiency leads to reduced glucocerebrosidase activity PLoS One 14 e0212382 https://doi.org/10.1371/journal.pone.0212382 Search in Google Scholar

eISSN:
1661-4917
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Medicine, Basic Medical Science, Biochemistry, Immunology, Clinical Medicine, other, Clinical Chemistry