Zacytuj

Abebe EC, Ayele TM, Muche ZT et al (2021) Neuropilin 1: A novel entry factor for Sars-Cov-2 infection and a potential therapeutic target. Biologics 15:143–152. https://doi.org/10.2147/BTT.S307352 AbebeEC AyeleTM MucheZT 2021 Neuropilin 1: A novel entry factor for Sars-Cov-2 infection and a potential therapeutic target Biologics 15 143 152 https://doi.org/10.2147/BTT.S307352 Search in Google Scholar

Aboudounya MM, Heads RJ (2021) COVID-19 and Toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyper-inflammation. Mediators Inflamm 2021:8874339. https://doi.org/10.1155/2021/8874339 AboudounyaMM HeadsRJ 2021 COVID-19 and Toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyper-inflammation Mediators Inflamm 2021 8874339 https://doi.org/10.1155/2021/8874339 Search in Google Scholar

Ahmed S, Zimba O, Gasparyan AY (2020) Thrombosis in coronavirus disease 2019 (COVID-19) through the prism of Virchow's triad. Clin Rheumatol 39:2529–2543. https://doi.org/10.1007/S10067-020-05275-1 AhmedS ZimbaO GasparyanAY 2020 Thrombosis in coronavirus disease 2019 (COVID-19) through the prism of Virchow's triad Clin Rheumatol 39 2529 2543 https://doi.org/10.1007/S10067-020-05275-1 Search in Google Scholar

Alzamora MC, Paredes T, Caceres D et al (2020) Severe COVID-19 during pregnancy and possible vertical transmission. Am J Perinatol 37:861–865. https://doi.org/10.1055/S-0040-1710050 AlzamoraMC ParedesT CaceresD 2020 Severe COVID-19 during pregnancy and possible vertical transmission Am J Perinatol 37 861 865 https://doi.org/10.1055/S-0040-1710050 Search in Google Scholar

Argueta LB, Lacko LA, Yaron Bram Y et al (2022) Inflammatory responses in the placenta upon SARS-CoV-2 infection late in pregnancy. IScience 25:104223. https://doi.org/10.1016/J.ISCI.2022.104223 ArguetaLB LackoLA Yaron BramY 2022 Inflammatory responses in the placenta upon SARS-CoV-2 infection late in pregnancy IScience 25 104223 https://doi.org/10.1016/J.ISCI.2022.104223 Search in Google Scholar

Baergen RN, Burton GJ, Kaplan CG (2022) Benirschke's pathology of the human placenta. Benirschke's pathology of the human placenta. Springer International Publishing. https://doi.org/10.1007/978-3-030-84725-8 BaergenRN BurtonGJ KaplanCG 2022 Benirschke's pathology of the human placenta. Benirschke's pathology of the human placenta Springer International Publishing https://doi.org/10.1007/978-3-030-84725-8 Search in Google Scholar

Baston-Buest DM, Porn AC, SchanzA et al (2011) Expression of the vascular endothelial growth factor receptor neuropilin-1 at the human embryomaternal interface. Eur J Obstet Gynecol Reprod Biol 154:151–156. https://doi.org/10.1016/J.EJOGRB.2010.10.018 Baston-BuestDM PornAC SchanzA 2011 Expression of the vascular endothelial growth factor receptor neuropilin-1 at the human embryomaternal interface Eur J Obstet Gynecol Reprod Biol 154 151 156 https://doi.org/10.1016/J.EJOGRB.2010.10.018 Search in Google Scholar

Boncompagni A, De Agostini M, Lugli L et al (2022) Unexpected vertical transmission of SARS-CoV-2: Discordant clinical course and transmission from mother to newborn. Microorganisms 10:1718. https://doi.org/10.3390/MICROORGANISMS10091718 BoncompagniA De AgostiniM LugliL 2022 Unexpected vertical transmission of SARS-CoV-2: Discordant clinical course and transmission from mother to newborn Microorganisms 10 1718 https://doi.org/10.3390/MICROORGANISMS10091718 Search in Google Scholar

Bouachba A, Allias F, Nadaud B et al (2021) Placental lesions and SARS-Cov-2 infection: Diffuse placenta damage associated to poor fetal outcome. Placenta 112:97–104. https://doi.org/10.1016/J.PLACENTA.2021.07.288 BouachbaA AlliasF NadaudB 2021 Placental lesions and SARS-Cov-2 infection: Diffuse placenta damage associated to poor fetal outcome Placenta 112 97 104 https://doi.org/10.1016/J.PLACENTA.2021.07.288 Search in Google Scholar

Boyraz B, James K, Hornick JL et al (2022) Placental pathology from COVID-19–recovered (nonacute) patients. Hum Pathol 125: 18–22. https://doi.org/10.1016/J.HUMPATH.2022.04.005 BoyrazB JamesK HornickJL 2022 Placental pathology from COVID-19–recovered (nonacute) patients Hum Pathol 125 18 22 https://doi.org/10.1016/J.HUMPATH.2022.04.005 Search in Google Scholar

Celik O, Saglam A, Baysal B et al (2020) Factors preventing materno-fetal transmission of SARS-CoV-2. Placenta 97:1–5. https://doi.org/10.1016/J.PLACENTA.2020.05.012 CelikO SaglamA BaysalB 2020 Factors preventing materno-fetal transmission of SARS-CoV-2 Placenta 97 1 5 https://doi.org/10.1016/J.PLACENTA.2020.05.012 Search in Google Scholar

Centers for Disease Control and Prevention (2023) Care for Breastfeeding People. https://www.cdc.gov/coronavirus/2019-ncov/hcp/care-for-breastfeeding-people.html. Accessed 30 June 2023. Centers for Disease Control and Prevention 2023 Care for Breastfeeding People https://www.cdc.gov/coronavirus/2019-ncov/hcp/care-for-breastfeeding-people.html. Accessed 30 June 2023. Search in Google Scholar

Chambers M, Rees A, Cronin JG et al (2021) Macrophage plasticity in reproduction and environmental influences on their function. Front Immunol 11:607328. https://doi.org/10.3389/FIMMU.2020.607328 ChambersM ReesA CroninJG 2021 Macrophage plasticity in reproduction and environmental influences on their function Front Immunol 11 607328 https://doi.org/10.3389/FIMMU.2020.607328 Search in Google Scholar

Chen J, Du L, Wang F et al (2022) Cellular and molecular atlas of the placenta from a COVID-19 pregnant woman infected at midgestation highlights the defective impacts on foetal health. Cell Prolif 55:e13204. https://doi.org/10.1111/CPR.13204 ChenJ DuL WangF 2022 Cellular and molecular atlas of the placenta from a COVID-19 pregnant woman infected at midgestation highlights the defective impacts on foetal health Cell Prolif 55 e13204 https://doi.org/10.1111/CPR.13204 Search in Google Scholar

Chlamydas S, Papavassiliou AG, Piperi C (2020) Epigenetic mechanisms regulating COVID-19 infection. Epigenetics 16:263–270. https://doi.org/10.1080/15592294.2020.1796896 ChlamydasS PapavassiliouAG PiperiC 2020 Epigenetic mechanisms regulating COVID-19 infection Epigenetics 16 263 270 https://doi.org/10.1080/15592294.2020.1796896 Search in Google Scholar

Colson A, Depoix CL, Dessilly G et al (2021) Clinical and in vitro evidence against placenta infection at term by severe acute respiratory syndrome coronavirus 2. Am J Pathol 191:1610–1623. https://doi.org/10.1016/J.AJPATH.2021.05.009 ColsonA DepoixCL DessillyG 2021 Clinical and in vitro evidence against placenta infection at term by severe acute respiratory syndrome coronavirus 2 Am J Pathol 191 1610 1623 https://doi.org/10.1016/J.AJPATH.2021.05.009 Search in Google Scholar

Daly JL, Simonetti B, Klein K et al (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370:861–865. https://doi.org/10.1126/SCIENCE.ABD3072 DalyJL SimonettiB KleinK 2020 Neuropilin-1 is a host factor for SARS-CoV-2 infection Science 370 861 865 https://doi.org/10.1126/SCIENCE.ABD3072 Search in Google Scholar

Donders GGG, Bosmans E, Reumers J et al (2022) Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: A prospective, observational study and validation of the Sperm COVID test. Fertil Steril 117:287–296. https://doi.org/10.1016/J.FERTNSTERT.2021.10.022 DondersGGG BosmansE ReumersJ 2022 Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: A prospective, observational study and validation of the Sperm COVID test Fertil Steril 117 287 296 https://doi.org/10.1016/J.FERTNSTERT.2021.10.022 Search in Google Scholar

Edlow AG, Li JZ, Collier A-RY et al (2020) Assessment of maternal and neonatal SARS-CoV-2 viral load, transplacental antibody transfer, and placental pathology in pregnancies during the COVID-19 pandemic. JAMA Netw Open 3:e2030455. https://doi.org/10.1001/JAMANETWORKOPEN.2020.30455 EdlowAG LiJZ CollierA-RY 2020 Assessment of maternal and neonatal SARS-CoV-2 viral load, transplacental antibody transfer, and placental pathology in pregnancies during the COVID-19 pandemic JAMA Netw Open 3 e2030455 https://doi.org/10.1001/JAMANETWORKOPEN.2020.30455 Search in Google Scholar

European Centre for Disease Prevention and Control (2023) SARS-CoV-2 Variants of Concern as of 29 June 2023. https://www.ecdc.europa.eu/en/covid-19/variants-concern. Accessed 30 June 2023. European Centre for Disease Prevention and Control 2023 SARS-CoV-2 Variants of Concern as of 29 June 2023 https://www.ecdc.europa.eu/en/covid-19/variants-concern. Accessed 30 June 2023. Search in Google Scholar

Facchetti F, Bugatti M, Drera E et al (2020) SARS-CoV2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of placenta. EBioMedicine 59:102951. https://doi.org/10.1016/J.EBIOM.2020.102951 FacchettiF BugattiM DreraE 2020 SARS-CoV2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of placenta EBioMedicine 59 102951 https://doi.org/10.1016/J.EBIOM.2020.102951 Search in Google Scholar

Fallach N, Segal Y, Agassy J et al (2022) Pregnancy outcomes after SARS-CoV-2 infection by trimester: A large, populationbased cohort study. PLoS One 17:e0270893. https://doi.org/10.1371/JOURNAL.PONE.0270893 FallachN SegalY AgassyJ 2022 Pregnancy outcomes after SARS-CoV-2 infection by trimester: A large, populationbased cohort study PLoS One 17 e0270893 https://doi.org/10.1371/JOURNAL.PONE.0270893 Search in Google Scholar

Fenizia C, Saulle I, Di Giminiani M et al (2021) Unlikely SARS-CoV-2 transmission during vaginal delivery. Reprod Sci 28:2939–2941. https://doi.org/10.1007/S43032-021-00681-5 FeniziaC SaulleI Di GiminianiM 2021 Unlikely SARS-CoV-2 transmission during vaginal delivery Reprod Sci 28 2939 2941 https://doi.org/10.1007/S43032-021-00681-5 Search in Google Scholar

Fu Y, Cheng Y, Wu Y (2020) Understanding SARS-CoV-2-mediated inflammatory responses: From mechanisms to potential therapeutic tools. Virol Sin 35:266–271. https://doi.org/10.1007/S12250-020-00207-4 FuY ChengY WuY 2020 Understanding SARS-CoV-2-mediated inflammatory responses: From mechanisms to potential therapeutic tools Virol Sin 35 266 271 https://doi.org/10.1007/S12250-020-00207-4 Search in Google Scholar

Gacci M, Coppi M, Baldi E et al (2021) Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19. Hum Reprod 36:1520–1529. https://doi.org/10.1093/HUMREP/DEAB026 GacciM CoppiM BaldiE 2021 Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19 Hum Reprod 36 1520 1529 https://doi.org/10.1093/HUMREP/DEAB026 Search in Google Scholar

Garcia-Flores V, Romero R, Xu Y et al (2022) Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2. Nat Commun 13:320. https://doi.org/10.1038/S41467-021-27745-Z Garcia-FloresV RomeroR XuY 2022 Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2 Nat Commun 13 320 https://doi.org/10.1038/S41467-021-27745-Z Search in Google Scholar

Gheware A, Ray A, Rana D et al (2022) ACE2 protein expression in lung tissues of severe COVID-19 infection. Sci Rep 12:4058. https://doi.org/10.1038/S41598-022-07918-6 GhewareA RayA RanaD 2022 ACE2 protein expression in lung tissues of severe COVID-19 infection Sci Rep 12 4058 https://doi.org/10.1038/S41598-022-07918-6 Search in Google Scholar

Glowacka I, Bertram S, Müller MA et al (2011) Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 85:4122–4134. https://doi.org/10.1128/JVI.02232-10 GlowackaI BertramS MüllerMA 2011 Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response J Virol 85 4122 4134 https://doi.org/10.1128/JVI.02232-10 Search in Google Scholar

Gorbalenya AE, Baker SC, Baric RS et al (2020) The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-NCoV and naming it SARS-CoV-2. Nat Microbiol 5: 536–544. https://doi.org/10.1038/S41564-020-0695-Z GorbalenyaAE BakerSC BaricRS 2020 The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-NCoV and naming it SARS-CoV-2 Nat Microbiol 5 536 544 https://doi.org/10.1038/S41564-020-0695-Z Search in Google Scholar

Guo HF, Vander Kooi CW (2015) Neuropilin functions as an essential cell surface receptor. J Biol Chem 290:29120–29126. https://doi.org/10.1074/JBC.R115.687327 GuoHF Vander KooiCW 2015 Neuropilin functions as an essential cell surface receptor J Biol Chem 290 29120 29126 https://doi.org/10.1074/JBC.R115.687327 Search in Google Scholar

Gychka SG, Brelidze TI, Kuchyn IL et al (2022) Placental vascular remodeling in pregnant women with COVID-19. PLoS One 17:e0268591. https://doi.org/10.1371/JOURNAL.PONE.0268591 GychkaSG BrelidzeTI KuchynIL 2022 Placental vascular remodeling in pregnant women with COVID-19 PLoS One 17 e0268591 https://doi.org/10.1371/JOURNAL.PONE.0268591 Search in Google Scholar

Hosier H, Farhadian SF, Morotti RA et al (2020) SARS-CoV-2 infection of the placenta. J Clin Invest 130:4947–4953. https://doi.org/10.1172/JCI139569 HosierH FarhadianSF MorottiRA 2020 SARS-CoV-2 infection of the placenta J Clin Invest 130 4947 4953 https://doi.org/10.1172/JCI139569 Search in Google Scholar

Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 HuangC WangY LiX 2020 Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet 395 497 506 https://doi.org/10.1016/S0140-6736(20)30183-5 Search in Google Scholar

Huang Y, Wang Y, Xu D et al (2022) Characterization of the SARS-CoV-2 coreceptor NRP1 expression profiles in healthy people and cancer patients: Implication for susceptibility to COVID-19 disease and potential therapeutic strategy. Front Genet 13:995736. https://doi.org/10.3389/FGENE.2022.995736 HuangY WangY XuD 2022 Characterization of the SARS-CoV-2 coreceptor NRP1 expression profiles in healthy people and cancer patients: Implication for susceptibility to COVID-19 disease and potential therapeutic strategy Front Genet 13 995736. https://doi.org/10.3389/FGENE.2022.995736 Search in Google Scholar

Hudak ML, Flannery DD, Barnette K et al (2023) Maternal and newborn hospital outcomes of perinatal SARS-CoV-2 infection: A national registry. Pediatrics 151:e2022059595. https://doi.org/10.1542/PEDS.2022-059595 HudakML FlanneryDD BarnetteK 2023 Maternal and newborn hospital outcomes of perinatal SARS-CoV-2 infection: A national registry Pediatrics 151 e2022059595 https://doi.org/10.1542/PEDS.2022-059595 Search in Google Scholar

Jackson CB, Farzan M, Chen B et al (2022) Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23:3–20. https://doi.org/10.1038/S41580-021-00418-X JacksonCB FarzanM ChenB 2022 Mechanisms of SARS-CoV-2 entry into cells Nat Rev Mol Cell Biol 23 3 20 https://doi.org/10.1038/S41580-021-00418-X Search in Google Scholar

Jafarzadeh A, Chauhan P, Saha B et al (2020) Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci 257:118102. https://doi.org/10.1016/J.LFS.2020.118102 JafarzadehA ChauhanP SahaB 2020 Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions Life Sci 257 118102. https://doi.org/10.1016/J.LFS.2020.118102 Search in Google Scholar

Jia HP, Dwight C, Look DC, Shi L et al (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79:14614–14621. https://doi.org/10.1128/JVI.79.23.14614-14621.2005 JiaHP DwightC LookDC ShiL 2005 ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia J Virol 79 14614 14621 https://doi.org/10.1128/JVI.79.23.14614-14621.2005 Search in Google Scholar

Jing Y, Run-Qian L, Hao-Ran et al (2020) Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod 26:367–373. https://doi.org/10.1093/MOLEHR/GAAA030 JingY Run-QianL Hao-Ran 2020 Potential influence of COVID-19/ACE2 on the female reproductive system Mol Hum Reprod 26 367 373 https://doi.org/10.1093/MOLEHR/GAAA030 Search in Google Scholar

Kapila V, Khalid C (2023) Physiology, placenta. StatPearls Publishing LLC. https://pubmed.ncbi.nlm.nih.gov/30855916/ KapilaV KhalidC 2023 Physiology, placenta StatPearls Publishing LLC https://pubmed.ncbi.nlm.nih.gov/30855916/ Search in Google Scholar

Karthik K, Senthilkumar TMA, Udhayavel S et al (2020) Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19. Hum Vaccin Immunother 16:3055–3060. https://doi.org/10.1080/21645515.2020.1796425 KarthikK SenthilkumarTMA UdhayavelS 2020 Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19 Hum Vaccin Immunother 16 3055 3060 https://doi.org/10.1080/21645515.2020.1796425 Search in Google Scholar

Karuppan, MKM, Devadoss D, Nair M et al (2021) SARS-CoV-2 infection in the central and peripheral nervous system-associated morbidities and their potential mechanism. Mol Neurobiol 58:2465–2480. https://doi.org/10.1007/S12035-020-02245-1 KaruppanMKM DevadossD NairM 2021 SARS-CoV-2 infection in the central and peripheral nervous system-associated morbidities and their potential mechanism Mol Neurobiol 58 2465 2480 https://doi.org/10.1007/S12035-020-02245-1 Search in Google Scholar

Khalil RA, Granger JP (2002) Vascular mechanisms of increased arterial pressure in preeclampsia: Lessons from animal models. Am J Physiol Regul Integr Comp Physiol 283:R29–R45. https://doi.org/10.1152/AJPREGU.00762.2001 KhalilRA GrangerJP 2002 Vascular mechanisms of increased arterial pressure in preeclampsia: Lessons from animal models Am J Physiol Regul Integr Comp Physiol 283 R29 R45 https://doi.org/10.1152/AJPREGU.00762.2001 Search in Google Scholar

Konstantinidou AE, Angelidou S, Havaki S et al (2022) Stillbirth due to SARS-CoV-2 placentitis without evidence of intrauterine transmission to fetus: Association with maternal risk factors. Ultrasound Obstet Gynecol 59:813–822. https://doi.org/10.1002/UOG.24906 KonstantinidouAE AngelidouS HavakiS 2022 Stillbirth due to SARS-CoV-2 placentitis without evidence of intrauterine transmission to fetus: Association with maternal risk factors Ultrasound Obstet Gynecol 59 813 822 https://doi.org/10.1002/UOG.24906 Search in Google Scholar

Kotlyar AM, Grechukhina O, Chen A et al (2021) Vertical transmission of coronavirus disease 2019: A systematic review and meta-analysis. Am J Obstet Gynecol 224:35–53.e3. https://doi.org/10.1016/J.AJOG.2020.07.049 KotlyarAM GrechukhinaO ChenA 2021 Vertical transmission of coronavirus disease 2019: A systematic review and meta-analysis Am J Obstet Gynecol 224 35 53.e3 https://doi.org/10.1016/J.AJOG.2020.07.049 Search in Google Scholar

Labzin LI, Chew KY, Eschke K et al (2023) Macrophage ACE2 is necessary for SARS-CoV-2 replication and subsequent cytokine responses that restrict continued virion release. Sci Signal 16:eabq1366. https://doi.org/10.1126/SCISIGNAL.ABQ1366 LabzinLI ChewKY EschkeK 2023 Macrophage ACE2 is necessary for SARS-CoV-2 replication and subsequent cytokine responses that restrict continued virion release Sci Signal 16 eabq1366 https://doi.org/10.1126/SCISIGNAL.ABQ1366 Search in Google Scholar

Mao Q, Chu S, Shapiro S et al (2022) Placental SARS-CoV-2 distribution correlates with level of tissue oxygenation in COVID-19-associated necrotizing histiocytic intervillositis/perivillous fibrin deposition. Placenta 117:187–193. https://doi.org/10.1016/J.PLACENTA.2021.12.002 MaoQ ChuS ShapiroS 2022 Placental SARS-CoV-2 distribution correlates with level of tissue oxygenation in COVID-19-associated necrotizing histiocytic intervillositis/perivillous fibrin deposition Placenta 117 187 193 https://doi.org/10.1016/J.PLACENTA.2021.12.002 Search in Google Scholar

Mayi BS, Leibowitz JA, Arden T, Woods AT et al (2021) The role of neuropilin-1 in COVID-19. PLoS Pathog 17:e1009153. https://doi.org/10.1371/JOURNAL.PPAT.1009153 MayiBS LeibowitzJA ArdenT WoodsAT 2021 The role of neuropilin-1 in COVID-19 PLoS Pathog 17 e1009153 https://doi.org/10.1371/JOURNAL.PPAT.1009153 Search in Google Scholar

Megli CJ, Coyne CB (2022) Infections at the maternal-fetal interface: An overview of pathogenesis and defence. Nat Rev Microbiol 20:67–82. https://doi.org/10.1038/S41579-021-00610-Y MegliCJ CoyneCB 2022 Infections at the maternal-fetal interface: An overview of pathogenesis and defence Nat Rev Microbiol 20 67 82 https://doi.org/10.1038/S41579-021-00610-Y Search in Google Scholar

Menter T, Mertz KD, Jiang S et al (2021) Placental pathology findings during and after SARS-CoV-2 infection: Features of villitis and malperfusion. Pathobiology 88:69–77. https://doi.org/10.1159/000511324 MenterT MertzKD JiangS 2021 Placental pathology findings during and after SARS-CoV-2 infection: Features of villitis and malperfusion Pathobiology 88 69 77 https://doi.org/10.1159/000511324 Search in Google Scholar

Mezouar S, Benammar I, Boumaza A et al (2019) Full-term human placental macrophages eliminate coxiella burnetii through an IFN-γ autocrine loop. Front Microbiol 10:2434. https://doi.org/10.3389/FMICB.2019.02434 MezouarS BenammarI BoumazaA 2019 Full-term human placental macrophages eliminate coxiella burnetii through an IFN-γ autocrine loop Front Microbiol 10 2434 https://doi.org/10.3389/FMICB.2019.02434 Search in Google Scholar

Mezouar S, Katsogiannou M, Amara AB et al (2021) Placental macrophages: Origin, heterogeneity, function and role in pregnancy-associated infections. Placenta 103:94–103. https://doi.org/10.1016/J.PLACENTA.2020.10.017 MezouarS KatsogiannouM AmaraAB 2021 Placental macrophages: Origin, heterogeneity, function and role in pregnancy-associated infections Placenta 103 94 103 https://doi.org/10.1016/J.PLACENTA.2020.10.017 Search in Google Scholar

Mirbeyk M, Saghazadeh A, Rezaei N (2021) A systematic review of pregnant women with COVID-19 and their neonates. Arch Gynecol Obstet 304:5–38. https://doi.org/10.1007/S00404-021-06049-Z MirbeykM SaghazadehA RezaeiN 2021 A systematic review of pregnant women with COVID-19 and their neonates Arch Gynecol Obstet 304 5 38 https://doi.org/10.1007/S00404-021-06049-Z Search in Google Scholar

Naidoo N, Moodley J, Khaliq OP et al (2022) Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review. Virus Res 319:198880. https://doi.org/10.1016/J.VIRUSRES.2022.198880 NaidooN MoodleyJ KhaliqOP 2022 Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review Virus Res 319 198880. https://doi.org/10.1016/J.VIRUSRES.2022.198880 Search in Google Scholar

Nobrega Cruz NA, Stoll D, Casarini DE et al (2021) Role of ACE2 in pregnancy and potential implications for COVID-19 susceptibility. Clin Sci 135:1805–1824. https://doi.org/10.1042/CS20210284 Nobrega CruzNA StollD CasariniDE 2021 Role of ACE2 in pregnancy and potential implications for COVID-19 susceptibility Clin Sci 135 1805 1824 https://doi.org/10.1042/CS20210284 Search in Google Scholar

Pathirathna ML, Samarasekara BPP, Dasanayake TS et al (2022) Adverse perinatal outcomes in COVID-19 infected pregnant women: A systematic review and meta-analysis. Healthcare 10:203. https://doi.org/10.3390/HEALTHCARE10020203 PathirathnaML SamarasekaraBPP DasanayakeTS 2022 Adverse perinatal outcomes in COVID-19 infected pregnant women: A systematic review and meta-analysis Healthcare 10 203 https://doi.org/10.3390/HEALTHCARE10020203 Search in Google Scholar

Percivalle E, Sammartino JC, Cassaniti I et al (2021) Macrophages and monocytes: ‘Trojan Horses’ in COVID-19. Viruses 13:2178. https://doi.org/10.3390/V13112178 PercivalleE SammartinoJC CassanitiI 2021 Macrophages and monocytes: ‘Trojan Horses’ in COVID-19 Viruses 13 2178 https://doi.org/10.3390/V13112178 Search in Google Scholar

Pettirosso E, Giles M, Cole S et al (2020) COVID-19 and pregnancy: A review of clinical characteristics, obstetric outcomes and vertical transmission. Austr NZ J Obstet Gynaecol 60:640–659. https://doi.org/10.1111/AJO.13204 PettirossoE GilesM ColeS 2020 COVID-19 and pregnancy: A review of clinical characteristics, obstetric outcomes and vertical transmission Austr NZ J Obstet Gynaecol 60 640 659 https://doi.org/10.1111/AJO.13204 Search in Google Scholar

Rackaityte E, Halkias J (2020) Mechanisms of fetal T cell tolerance and immune regulation. Front Immunol 11:588. https://doi.org/10.3389/FIMMU.2020.00588 RackaityteE HalkiasJ 2020 Mechanisms of fetal T cell tolerance and immune regulation Front Immunol 11 588 https://doi.org/10.3389/FIMMU.2020.00588 Search in Google Scholar

Reyes L, Wolfe B, Golos T (2017) Hofbauer cells: Placental macrophages of fetal origin. Results Probl Cell Differ 62:45–60. https://doi.org/10.1007/978-3-319-54090-0_3 ReyesL WolfeB GolosT 2017 Hofbauer cells: Placental macrophages of fetal origin Results Probl Cell Differ 62 45 60 https://doi.org/10.1007/978-3-319-54090-0_3 Search in Google Scholar

Robbins JR, Bakardjiev AI (2012) Pathogens and the placental fortress. Curr Opin Microbiol 15:36–43. https://doi.org/10.1016/J.MIB.2011.11.006 RobbinsJR BakardjievAI 2012 Pathogens and the placental fortress Curr Opin Microbiol 15 36 43 https://doi.org/10.1016/J.MIB.2011.11.006 Search in Google Scholar

Rojas-Rueda D, Morales-Zamora E (2021) Built environment, transport, and COVID-19: A review. Curr Environ Health Rep 8:138–145. https://doi.org/10.1007/S40572-021-00307-7 Rojas-RuedaD Morales-ZamoraE 2021 Built environment, transport, and COVID-19: A review Curr Environ Health Rep 8 138 145 https://doi.org/10.1007/S40572-021-00307-7 Search in Google Scholar

Roy S, Arup K, Bag AK, Singh RK et al (2017) Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy. Front Immunol 8:1228. https://doi.org/10.3389/FIMMU.2017.01228 RoyS ArupK BagAK SinghRK 2017 Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy Front Immunol 8 1228 https://doi.org/10.3389/FIMMU.2017.01228 Search in Google Scholar

Ruan D, Ye ZW, Yuan S et al (2022) Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Cell Rep Med 3:100849. https://doi.org/10.1016/J.XCRM.2022.100849 RuanD YeZW YuanS 2022 Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection Cell Rep Med 3 100849 https://doi.org/10.1016/J.XCRM.2022.100849 Search in Google Scholar

Salamanna F, Maglio M, Landini MP et al (2020) Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front Med 7:594495. https://doi.org/10.3389/FMED.2020.594495 SalamannaF MaglioM LandiniMP 2020 Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2 Front Med 7 594495. https://doi.org/10.3389/FMED.2020.594495 Search in Google Scholar

Samavati L, Uhal BD (2020) ACE2, much more than just a receptor for SARS-COV-2. Front Cell Infect Microbiol 10:317. https://doi.org/10.3389/FCIMB.2020.00317 SamavatiL UhalBD 2020 ACE2, much more than just a receptor for SARS-COV-2 Front Cell Infect Microbiol 10 317 https://doi.org/10.3389/FCIMB.2020.00317 Search in Google Scholar

Schwartz DA, Baldewijns M, Benachi A et al (2021) Hofbauer cells and COVID-19 in pregnancy: molecular pathology analysis of villous macrophages, endothelial cells, and placental findings from 22 placentas infected by SARS-CoV-2 with and without fetal transmission. Arch Pathol Lab Med 145:1328–1340. https://doi.org/10.5858/ARPA.2021-0296-SA SchwartzDA BaldewijnsM BenachiA 2021 Hofbauer cells and COVID-19 in pregnancy: molecular pathology analysis of villous macrophages, endothelial cells, and placental findings from 22 placentas infected by SARS-CoV-2 with and without fetal transmission Arch Pathol Lab Med 145 1328 1340 https://doi.org/10.5858/ARPA.2021-0296-SA Search in Google Scholar

Schwartz DA, Morotti D, Beigi B et al (2020) Confirming vertical fetal infection with coronavirus disease 2019: Neonatal and pathology criteria for early onset and transplacental transmission of severe acute respiratory syndrome coronavirus 2 from infected pregnant mothers. Arch Pathol Lab Med 144:1451–1456. https://doi.org/10.5858/ARPA.2020-0442-SA SchwartzDA MorottiD BeigiB 2020 Confirming vertical fetal infection with coronavirus disease 2019: Neonatal and pathology criteria for early onset and transplacental transmission of severe acute respiratory syndrome coronavirus 2 from infected pregnant mothers Arch Pathol Lab Med 144 1451 1456 https://doi.org/10.5858/ARPA.2020-0442-SA Search in Google Scholar

Sefik E, Rihao Qu R, Junqueira C et al (2022) Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 606:585–593. https://doi.org/10.1038/S41586-022-04802-1 SefikE Rihao QuR JunqueiraC 2022 Inflammasome activation in infected macrophages drives COVID-19 pathology Nature 606 585 593 https://doi.org/10.1038/S41586-022-04802-1 Search in Google Scholar

Senapati S, Banerjee P, Bhagavatula S et al (2021) Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. J Genet 100:12. https://doi.org/10.1007/S12041-021-01262-W SenapatiS BanerjeeP BhagavatulaS 2021 Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19 J Genet 100 12 https://doi.org/10.1007/S12041-021-01262-W Search in Google Scholar

Seyed Hosseini E, Kashani NR, Nikzad H et al (2020) The novel coronavirus disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology 551:1–9. https://doi.org/10.1016/J.VIROL.2020.08.011 Seyed HosseiniE KashaniNR NikzadH 2020 The novel coronavirus disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies Virology 551 1 9 https://doi.org/10.1016/J.VIROL.2020.08.011 Search in Google Scholar

Shanes ED, Mithal LB, Otero S et al (2020) Placental pathology in COVID-19. Am J Clin Pathol 154:23–32. https://doi.org/10.1093/AJCP/AQAA089 ShanesED MithalLB OteroS 2020 Placental pathology in COVID-19 Am J Clin Pathol 154 23 32 https://doi.org/10.1093/AJCP/AQAA089 Search in Google Scholar

Sharps MC, Hayes DJL, Lee S et al (2020) A structured review of placental morphology and histopathological lesions associated with SARS-CoV-2 infection. Placenta 101:13–29. https://doi.org/10.1016/J.PLACENTA.2020.08.018 SharpsMC HayesDJL LeeS 2020 A structured review of placental morphology and histopathological lesions associated with SARS-CoV-2 infection Placenta 101 13 29 https://doi.org/10.1016/J.PLACENTA.2020.08.018 Search in Google Scholar

Slomski A (2022) Maternal death rate increased during early COVID-19 pandemic. JAMA 328:415. https://doi.org/10.1001/JAMA.2022.12729 SlomskiA 2022 Maternal death rate increased during early COVID-19 pandemic JAMA 328 415 https://doi.org/10.1001/JAMA.2022.12729 Search in Google Scholar

Smithgall MC, Liu-Jarin X, Hamele-Bena D et al (2020) Third-trimester placentas of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive women: histomorphology, including viral immunohistochemistry and in-situ hybridization. Histopathology 77:994–999. https://doi.org/10.1111/HIS.14215 SmithgallMC Liu-JarinX Hamele-BenaD 2020 Third-trimester placentas of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive women: histomorphology, including viral immunohistochemistry and in-situ hybridization Histopathology 77 994 999 https://doi.org/10.1111/HIS.14215 Search in Google Scholar

Takada K, Shimodai-Yamada S, Suzuki M et al (2022) Restriction of SARS-CoV-2 replication in the human placenta. Placenta 127:73–76. https://doi.org/10.1016/J.PLACENTA.2022.07.010 TakadaK Shimodai-YamadaS SuzukiM 2022 Restriction of SARS-CoV-2 replication in the human placenta Placenta 127 73 76 https://doi.org/10.1016/J.PLACENTA.2022.07.010 Search in Google Scholar

The American College of Obstetricians and Gynecologists (2023) COVID-19. https://www.acog.org/womens-health/covid-19. Accessed 30 June 2023. The American College of Obstetricians and Gynecologists 2023 COVID-19 https://www.acog.org/womens-health/covid-19. Accessed 30 June 2023. Search in Google Scholar

Vivanti AJ, Vauloup-Fellous C, Prevot S et al (2020) Transplacental transmission of SARS-CoV-2 infection. Nat Commun 11:3572. https://doi.org/10.1038/S41467-020-17436-6 VivantiAJ Vauloup-FellousC PrevotS 2020 Transplacental transmission of SARS-CoV-2 infection Nat Commun 11 3572 https://doi.org/10.1038/S41467-020-17436-6 Search in Google Scholar

Wang S, Wang J, Yu X et al (2022) Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires FcγRIIB and virus-antibody complex with bivalent interaction. Commun Biol 5:262. https://doi.org/10.1038/S42003-022-03207-0 WangS WangJ YuX 2022 Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires FcγRIIB and virus-antibody complex with bivalent interaction Commun Biol 5 262 https://doi.org/10.1038/S42003-022-03207-0 Search in Google Scholar

Watkins JC, Torous VF, Roberts DJ (2021) Defining severe acute respiratory syndrome coronavirus 2 (sars-cov-2) placentitis a report of 7 cases with confirmatory in situ hybridization, distinct histomorphologic features, and evidence of complement deposition. Arch Pathol Lab Med 145:1341–1349. https://doi.org/10.5858/ARPA.2021-0246-SA WatkinsJC TorousVF RobertsDJ 2021 Defining severe acute respiratory syndrome coronavirus 2 (sars-cov-2) placentitis a report of 7 cases with confirmatory in situ hybridization, distinct histomorphologic features, and evidence of complement deposition Arch Pathol Lab Med 145 1341 1349 https://doi.org/10.5858/ARPA.2021-0246-SA Search in Google Scholar

Xu Y, Liang Y, Parunov L et al (2020) Combined thrombogenic effects of vessel injury, pregnancy and procoagulant immune globulin administration in mice. Thromb J 18:32. https://doi.org/10.1186/S12959-020-00245-8 XuY LiangY ParunovL 2020 Combined thrombogenic effects of vessel injury, pregnancy and procoagulant immune globulin administration in mice Thromb J 18 32 https://doi.org/10.1186/S12959-020-00245-8 Search in Google Scholar

Yao Y, Xu XH, Jin L (2019) Macrophage polarization in physiological and pathological pregnancy. Front Immunol 10:792. https://doi.org/10.3389/FIMMU.2019.00792 YaoY XuXH JinL 2019 Macrophage polarization in physiological and pathological pregnancy Front Immunol 10 792 https://doi.org/10.3389/FIMMU.2019.00792 Search in Google Scholar

Yu X, Lin Q, Qin X et al (2016) ACE2 antagonizes VEGFa to reduce vascular permeability during acute lung injury. Cell Physiol Biochem 38:1055–1062. https://doi.org/10.1159/000443056 YuX LinQ QinX 2016 ACE2 antagonizes VEGFa to reduce vascular permeability during acute lung injury Cell Physiol Biochem 38 1055 1062 https://doi.org/10.1159/000443056 Search in Google Scholar

Zaim S, Chong JH, Sankaranarayanan V et al (2020) COVID-19 and multiorgan response. Curr Probl Cardiol 45:100618. https://doi.org/10.1016/J.CPCARDIOL.2020.100618 ZaimS ChongJH SankaranarayananV 2020 COVID-19 and multiorgan response Curr Probl Cardiol 45 100618 https://doi.org/10.1016/J.CPCARDIOL.2020.100618 Search in Google Scholar

Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273. https://doi.org/10.1038/S41586-020-2012-7 ZhouP YangXL WangXG 2020 A pneumonia outbreak associated with a new coronavirus of probable bat origin Nature 579 270 273 https://doi.org/10.1038/S41586-020-2012-7 Search in Google Scholar

eISSN:
1661-4917
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Medicine, Basic Medical Science, Biochemistry, Immunology, Clinical Medicine, other, Clinical Chemistry