Otwarty dostęp

Light and heavy ferritin chain expression in the liver and kidneys of Wistar rats: aging, sex differences, and impact of gonadectomy


Zacytuj

Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021;13(5):mfab021. doi:10.1093/mtomcs/mfab021 Plays M Müller S Rodriguez R Chemistry and biology of ferritin Metallomics 202113 5 mfab021 10.1093/mtomcs/mfab021Open DOISearch in Google Scholar

Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017;69:414–22. doi: 10.1002/iub.1621 Arosio P Elia L Poli M Ferritin, cellular iron storage and regulation IUBMB Life 201769414 22 10.1002/iub.1621Open DOISearch in Google Scholar

Arosio P, Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta 2010;1800:783–92. doi: 10.1016/j.bbagen.2010.02.005 Arosio P Levi S Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage Biochim Biophys Acta 20101800783 92 10.1016/j.bbagen.2010.02.005Open DOISearch in Google Scholar

Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell 2017;168:344–61. doi: 10.1016/j.cell.2016.12.034 Muckenthaler MU Rivella S Hentze MW Galy B A red carpet for iron metabolism Cell 2017168344 61 10.1016/j.cell.2016.12.034Open DOISearch in Google Scholar

van Swelm RPL, Wetzels JFM, Swinkels DW. The multifaceted role of iron in renal health and disease. Nat Rev Nephrol 2020;16:77–98. doi: 10.1038/s41581-019-0197-5 van Swelm RPL Wetzels JFM Swinkels DW The multifaceted role of iron in renal health and disease Nat Rev Nephrol 20201677 98 10.1038/s41581-019-0197-5Open DOISearch in Google Scholar

Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr 2017;106(Suppl 6):1559S-66S. doi: 10.3945/ ajcn.117.155804 Anderson GJ Frazer DM Current understanding of iron homeostasis Am J Clin Nutr 2017106 Suppl 6 1559S 66 10.3945/ajcn.117.155804Open DOISearch in Google Scholar

Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 2017;8:126–36. doi: 10.3945/an.116.013961 Sangkhae V Nemeth E Regulation of the iron homeostatic hormone hepcidin Adv Nutr 20178126 36 10.3945/an.116.013961Open DOISearch in Google Scholar

Li W, Garringer HJ, Goodwin CB, Richine B, Acton A, Van Duyn N, Muhoberac BB, Irimia-Dominguez J, Chan RJ, Peacock M, Nass R, Ghetti B, Vidal R. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS One 2015;10(1):e0117435. doi: 10.1371/journal. pone.0117435 Li W Garringer HJ Goodwin CB Richine B Acton A Van Duyn N Muhoberac BB Irimia-Dominguez J Chan RJ Peacock M Nass R Ghetti B Vidal R Systemic and cerebral iron homeostasis in ferritin knock-out mice PLoS One 201510 1 e0117435 10.1371/journal.pone.0117435Open DOISearch in Google Scholar

Bjørklid E, Helgeland L. Sex differences in the ferritin content of rat liver. Biochim Biophys Acta 1970;221:583–92. doi: 10.1016/00052795(70)90230-8 Bjørklid E Helgeland L Sex differences in the ferritin content of rat liver Biochim Biophys Acta 1970221583 92 10.1016/00052795(70)90230-8Open DOISearch in Google Scholar

Linder MC, Moor JR, Scott LE, Munro HN. Mechanism of sex difference in rat tissue iron stores. Biochim Biophys Acta 1973;297:70–80. doi: 10.1016/0304-4165(73)90050-0 Linder MC Moor JR Scott LE Munro HN Mechanism of sex difference in rat tissue iron stores Biochim Biophys Acta 19732977080 10.1016/0304-4165(73)90050-0Open DOISearch in Google Scholar

Bulvik BE, Berenshtein E, Konijn AM, Grinberg L, Vinokur V, Eliashar R, Chevion MM. Aging is an organ-specific process: changes in homeostasis of iron and redox proteins in the rat. Age 2012;34:693–704. doi: 10.1007/s11357-011-9268-7 Bulvik BE Berenshtein E Konijn AM Grinberg L Vinokur V Eliashar R Chevion MM Aging is an organ-specific process: changes in homeostasis of iron and redox proteins in the rat Age 201234693704 10.1007/s11357-011-9268-7333792821643761Open DOISearch in Google Scholar

Arvapalli RK, Paturi S, Laurino JP, Katta A, Kakarla SK, Gadde MK, Wu M, Rice KM, Walker EM, Wehner P, Blough ER. Deferasirox decreases age-associated iron accumulation in the aging f344xbn rat heart and liver. Cardiovasc Toxicol 2010;10:108–16. doi: 10.1007/ s12012-010-9068-9 Arvapalli RK Paturi S Laurino JP Katta A Kakarla SK Gadde MK Wu M Rice KM Walker EM Wehner P Blough ER Deferasirox decreases age-associated iron accumulation in the aging f344xbn rat heart and liver Cardiovasc Toxicol 201010108 16 10.1007/s12012-010-9068-920229123Open DOISearch in Google Scholar

Widdowson EM, McCance RA. Sexual differences in the storage and metabolism of iron. Biochem J 1948;42:577–81. doi: 10.1042/ bj0420577 Widdowson EM McCance RA Sexual differences in the storage and metabolism of iron Biochem J 194842577 81 10.1042/bj0420577125878216748331Open DOISearch in Google Scholar

Widdowson EM, McCance RA. The effect of dosage on sexual differences in the iron metabolism of rats. Biochem J 1953;53:173–7. doi: 10.1042/bj0530173 Widdowson EM McCance RA The effect of dosage on sexual differences in the iron metabolism of rats Biochem J 195353173 7 10.1042/bj0530173119812013032051Open DOISearch in Google Scholar

Kaldor I, Powell M. Studies on intermediary iron metabolism. X. The influence of age and sex on the storage of supplemental dietary iron in the rat. Aust J Exp Biol Med Sci 1957;35:123–9. doi: 10.1038/ icb.1957.15 Kaldor I Powell M Studies on intermediary iron metabolism X. The influence of age and sex on the storage of supplemental dietary iron in the rat. Aust J Exp Biol Med Sci 195735123 9 10.1038/icb.1957.15Open DOISearch in Google Scholar

Kaldor I. Studies on intermediary iron metabolism. XII. Measurement of the iron derived from water soluble and water insoluble non-haem compounds (ferritin and haemosiderin iron) in liver and spleen. Aust J Exp Biol Med Sci 1958;36:173–82. doi: 10.1038/icb.1958.19 Kaldor I Studies on intermediary iron metabolism XII. Measurement of the iron derived from water soluble and water insoluble non-haem compounds (ferritin and haemosiderin iron) in liver and spleen. Aust J Exp Biol Med Sci 195836173 82 10.1038/icb.1958.19Open DOISearch in Google Scholar

Xu J, Jia Z, Knutson MD, Leeuwenburgh C. Impaired iron status in aging research. Int J Mol Sci 2012;13:2368–86. doi: 10.3390/ijms13022368 Xu J Jia Z Knutson MD Leeuwenburgh C Impaired iron status in aging research Int J Mol Sci 2012132368 86 10.3390/ijms13022368329202822408459Open DOISearch in Google Scholar

Kong WN, Niu QM, Ge L, Zhang N, Yan SF, Chen WB, Chang YZ, Zhao SE. Sex differences in iron status and hepcidin expression in rats. Biol Trace Elem Res 2014;160:258–67. doi: 10.1007/s12011-014-0051-3 Kong WN Niu QM Ge L Zhang N Yan SF Chen WB Chang YZ Zhao SE Sex differences in iron status and hepcidin expression in rats Biol Trace Elem Res 2014160258 67 10.1007/s12011-014-0051-324962641Open DOISearch in Google Scholar

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [displayed 22 March 2022]. Available at: https:// eur-lex.europa.eu/eli/dir/2010/63/oj Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [displayed 22 March 2022] Available at https:// eur-lex.europa.eu/eli/dir/2010/63/ojSearch in Google Scholar

Ljubojević M, Orct T, Micek V, Karaica D, Jurasović J, Breljak D, Vrhovac Madunić I, Rašić D, Novak Jovanović I, Peraica M, Gerić M, Gajski G, Oguić SK, Rogić D, Nanić L, Rubelj I, Sabolić I. Sex-dependent expression of metallothioneins MT1 and MT2 and concentrations of trace elements in rat liver and kidney tissues: Effect of gonadectomy. J Trace Elem Med Biol 2019;53:98–108. doi: 10.1016/j.jtemb.2019.02.010 Ljubojević M Orct T Micek V Karaica D Jurasović J Breljak D Vrhovac Madunić I Rašić D Novak Jovanović I Peraica M Gerić M Gajski G Oguić SK Rogić D Nanić L Rubelj I Sabolić I Sex-dependent expression of metallothioneins MT1 and MT2 and concentrations of trace elements in rat liver and kidney tissues: Effect of gonadectomy J Trace Elem Med Biol 20195398 108 10.1016/j.jtemb.2019.02.01030910215Open DOISearch in Google Scholar

Sabolić I, Škarica M, Ljubojević M, Breljak D, Herak-Kramberger CM, Crljen V, Ljubešić N. Expression and immunolocalization of metallothioneins MT1, MT2 and MT3 in rat nephron. J Trace Elem Med Biol 2018;46:62–75. doi: 10.1016/j.jtemb.2017.11.011 Sabolić I Škarica M Ljubojević M Breljak D Herak-Kramberger CM Crljen V Ljubešić N Expression and immunolocalization of metallothioneins MT1, MT2 and MT3 in rat nephron J Trace Elem Med Biol 20184662 75 10.1016/j.jtemb.2017.11.01129413112Open DOISearch in Google Scholar

Orct T, Jurasović J, Micek V, Karaica D, Sabolić I. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo. J Trace Elem Med Biol 2017;40:104–11. doi: 1016/j.jtemb.2016.12.015 Orct T Jurasović J Micek V Karaica D Sabolić I Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo J Trace Elem Med Biol 201740104 11 1016/j.jtemb.2016.12.015Open DOISearch in Google Scholar

Roy A, Al-bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 2015;10:305–24. doi: 10.2215/CJN.08880914 Roy A Al-bataineh MM Pastor-Soler NM Collecting duct intercalated cell function and regulation Clin J Am Soc Nephrol 201510305 24 10.2215/CJN.08880914431774725632105Open DOISearch in Google Scholar

Broeker KAE, Fuchs MAA, Schrankl J, Lehrmann C, Schley G, Todorov VT, Hugo C, Wagner C, Kurtz A. Prolyl-4-hydroxylases 2 and 3 control erythropoietin production in renin-expressing cells of mouse kidneys. J Physiol 2022;600:671–94. doi: 10.1113/JP282615 Broeker KAE Fuchs MAA Schrankl J Lehrmann C Schley G Todorov VT Hugo C Wagner C Kurtz A Prolyl-4-hydroxylases 2 and 3 control erythropoietin production in renin-expressing cells of mouse kidneys J Physiol 2022600671 94 10.1113/JP28261534863041Open DOISearch in Google Scholar

Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang DL, Crooks DR, Sougrat R, Morgenstern A, Galy B, Hentze MW, Lazaro FJ, Rouault TA, Meyron-Holtz EG. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 2010;116:1574–84. doi: 10.1182/blood-2009-11-253815 Cohen LA Gutierrez L Weiss A Leichtmann-Bardoogo Y Zhang DL Crooks DR Sougrat R Morgenstern A Galy B Hentze MW Lazaro FJ Rouault TA Meyron-Holtz EG Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway Blood 20101161574 84 10.1182/blood-2009-11-25381520472835Open DOISearch in Google Scholar

McCullough K, Bolisetty S. Ferritins in kidney disease. Semin Nephrol 2020;40:160–72. doi: 10.1016/j.semnephrol.2020.01.007 McCullough K Bolisetty S Ferritins in kidney disease Semin Nephrol 202040160 72 10.1016/j.semnephrol.2020.01.007717200532303279Open DOISearch in Google Scholar

Balla J, Balla G, Zarjou A. Ferritin in kidney and vascular related diseases: novel roles for an old player. Pharmaceuticals (Basel) 2019;12:96. doi: 10.3390/ph12020096 Balla J Balla G Zarjou A Ferritin in kidney and vascular related diseases: novel roles for an old player Pharmaceuticals (Basel) 20191296 10.3390/ph12020096663027231234273Open DOISearch in Google Scholar

Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, Shoenfeld Y. Ferritin - from iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun 2022;126:102778. doi: 10.1016/j.jaut.2021.102778 Mahroum N Alghory A Kiyak Z Alwani A Seida R Alrais M Shoenfeld Y Ferritin - from iron, through inflammation and autoimmunity, to COVID-19 J Autoimmun 2022126102778 10.1016/j.jaut.2021.102778864758434883281Open DOISearch in Google Scholar

Zhang Y, Mikhael M, Xu D, Li Y, Soe-Lin S, Ning B, Li W, Nie G, Zhao Y, Ponka P. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid Redox Signal 2010;13:999–1009. doi: 10.1089/ars.2010.3129 Zhang Y Mikhael M Xu D Li Y Soe-Lin S Ning B Li W Nie G Zhao Y Ponka P Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit Antioxid Redox Signal 201013999 1009 10.1089/ars.2010.312920406137Open DOISearch in Google Scholar

Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12:1161–208. doi: 10.2174/0929867053764635 Valko M Morris H Cronin MT Metals, toxicity and oxidative stress Curr Med Chem 2005121161 208 10.2174/092986705376463515892631Open DOISearch in Google Scholar

Baird SK, Kurz T, Brunk UT. Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem J 2006;394:275–83. doi: 10.1042/BJ20051143 Baird SK Kurz T Brunk UT Metallothionein protects against oxidative stress-induced lysosomal destabilization Biochem J 2006394275 83 10.1042/BJ20051143138602616236025Open DOISearch in Google Scholar

Terman A, Kurz T. Lysosomal iron, iron chelation, and cell death. Antioxid Redox Signal 2013;18:888–98. doi: 10.1089/ars.2012.4885 Terman A Kurz T Lysosomal iron, iron chelation, and cell death Antioxid Redox Signal 201318888 98 10.1089/ars.2012.488522909065Open DOISearch in Google Scholar

Pavić M, Turčić P, Ljubojević M. Forgotten partners and function regulators of inducible metallothioneins. Arh Hig Rada Toksikol 2019;70:256–64. doi: 10.2478/aiht-2019-70-3317 Pavić M Turčić P Ljubojević M Forgotten partners and function regulators of inducible metallothioneins Arh Hig Rada Toksikol 201970256 64 10.2478/aiht-2019-70-331732623859Open DOISearch in Google Scholar

Atrian S, Capdevila M. Metallothionein-protein interactions. Biomol Concepts 2013;4:143–60. doi: 10.1515/bmc-2012-0049 Atrian S Capdevila M Metallothionein-protein interactions Biomol Concepts 20134143 60 10.1515/bmc-2012-004925436572Open DOISearch in Google Scholar

Orihuela R, Fernández B, Palacios O, Valero E, Atrian S, Watt RK, Dominguez-Vera JM, Capdevila M. Ferritin and metallothionein: dangerous liaisons. Chem Commun 2011;47:12155–7. doi: 10.1039/c1cc14819b Orihuela R Fernández B Palacios O Valero E Atrian S Watt RK Dominguez-Vera JM Capdevila M Ferritin and metallothionein: dangerous liaisons Chem Commun 20114712155 7 10.1039/c1cc14819b21991581Open DOISearch in Google Scholar

Silva-Islas CA, Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 2018;134:92–9. doi: 10.1016/j.phrs.2018.06.013 Silva-Islas CA Maldonado PD Canonical and non-canonical mechanisms of Nrf2 activation Pharmacol Res 201813492 9 10.1016/j.phrs.2018.06.01329913224Open DOISearch in Google Scholar

Pietsch EC, Chan JY, Torti FM, Torti SV. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J Biol Chem 2003;278:2361–9. doi: 10.1074/jbc. M210664200 Pietsch EC Chan JY Torti FM Torti SV Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones J Biol Chem 20032782361 9 10.1074/jbc.M21066420012435735Open DOISearch in Google Scholar

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: a regulated cell death nexus linking metabolism redox biology, and disease. Cell 2017;171:273–85. doi: 10.1016/j.cell.2017.09.021 Stockwell BR Friedmann Angeli JP Bayir H Bush AI Conrad M Dixon SJ Fulda S Gascón S Hatzios SK Kagan VE Noel K Jiang X Linkermann A Murphy ME Overholtzer M Oyagi A Pagnussat GC Park J Ran Q Rosenfeld CS Salnikow K Tang D Torti FM Torti SV Toyokuni S Woerpel KA Zhang DD Ferroptosis: a regulated cell death nexus linking metabolism redox biology, and disease Cell 2017171273 85 10.1016/j.cell.2017.09.021568518028985560Open DOISearch in Google Scholar

Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI, Cater MA. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 2018;14:100–15. doi: 10.1016/j.redox.2017.08.015 Masaldan S Clatworthy SAS Gamell C Meggyesy PM Rigopoulos AT Haupt S Haupt Y Denoyer D Adlard PA Bush AI Cater MA Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis Redox Biol 20181410015 10.1016/j.redox.2017.08.015559626428888202Open DOISearch in Google Scholar

Lista P, Straface E, Brunelleschi S, Franconi F, Malorni W. On the role of autophagy in human diseases: a sex perspective. J Cell Mol Med 2011;15:1443–57. doi: 10.1111/j.1582-4934.2011.01293.x Lista P Straface E Brunelleschi S Franconi F Malorni W On the role of autophagy in human diseases: a sex perspective J Cell Mol Med 2011151443 57 10.1111/j.1582-4934.2011.01293.x382319021362130Open DOISearch in Google Scholar

Shapiro JS, Chang HC, Ardehali H. Iron and sex cross paths in the heart. J Am Heart Assoc 2017;6(1):e005459. doi: 10.1161/JAHA.116.005459 Shapiro JS Chang HC Ardehali H Iron and sex cross paths in the heart J Am Heart Assoc 20176 1 e005459 10.1161/JAHA.116.005459552364828115313Open DOISearch in Google Scholar

Congdon EE. Sex differences in autophagy contribute to female vulnerability in Alzheimer’s disease. Front Neurosci 2018;12:372. doi: 10.3389/fnins.2018.00372 Congdon EE Sex differences in autophagy contribute to female vulnerability in Alzheimer’s disease Front Neurosci 201812372 10.3389/fnins.2018.00372602399429988365Open DOISearch in Google Scholar

Andersen RV, Tybjaerg-Hansen A, Appleyard M, Birgens H, Nordestgaard BG. Hemochromatosis mutations in the general population: iron overload progression rate. Blood 2004;103:2914–9. doi: 10.1182/blood-2003-10-3564 Andersen RV Tybjaerg-Hansen A Appleyard M Birgens H Nordestgaard BG Hemochromatosis mutations in the general population: iron overload progression rate Blood 20041032914 9 10.1182/blood-2003-10-356415070663Open DOISearch in Google Scholar

Harrison-Findik DD. Gender-related variations in iron metabolism and liver diseases. World J Hepatol 2010;2:302–10. doi: 10.4254/wjh.v2.i8.302 Harrison-Findik DD Gender-related variations in iron metabolism and liver diseases World J Hepatol 20102302 10 10.4254/wjh.v2.i8.302299929721161013Open DOISearch in Google Scholar

Meynard D, Babitt JL, Lin HY. The liver: conductor of systemic iron balance. Blood 2014;123:168–76. doi: 10.1182/blood-2013-06-427757 Meynard D Babitt JL Lin HY The liver: conductor of systemic iron balance Blood 2014123168 76 10.1182/blood-2013-06-427757388828524200681Open DOISearch in Google Scholar

Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci 2019;76:99–128. doi: 10.1007/s00018-018-2947-0 Bessone F Razori MV Roma MG Molecular pathways of nonalcoholic fatty liver disease development and progression Cell Mol Life Sci 20197699 128 10.1007/s00018-018-2947-030343320Open DOISearch in Google Scholar

Jung SH, DeRuisseau LR, Kavazis AN, DeRuisseau KC. Plantaris muscle of aged rats demonstrates iron accumulation and altered expression of iron regulation proteins. Exp Physiol 2008;93:407–14. doi: 10.1113/expphysiol.2007.039453 Jung SH DeRuisseau LR Kavazis AN DeRuisseau KC Plantaris muscle of aged rats demonstrates iron accumulation and altered expression of iron regulation proteins Exp Physiol 200893407 14 10.1113/expphysiol.2007.03945317981932Open DOISearch in Google Scholar

eISSN:
1848-6312
Języki:
Angielski, Slovenian
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, other