[
Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of American Journal, 81, 687–711. https://doi.org/10.2136/sssaj2017.01.0017
]Search in Google Scholar
[
Blanco-Canqui, H., Creech, C. F., & Easterly, A. C. (2024). How does biochar impact soils and crops in a semi-arid environment? A 5-yr assessment. Field Crops Research, 310, 109340. https://doi.org/10.1016/j.fcr.2024.109340
]Search in Google Scholar
[
Carter, S., Shackley, S., Sohi, S., Suy, T. B., & Haefele, S. (2013). The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3(2), 404–418. https://doi.org/10.3390/agronomy3020404
]Search in Google Scholar
[
Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G.,Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36, 36. https://doi.org/10.1007/s13593-016-0372-z
]Search in Google Scholar
[
Horák, J., & Šimanský, V. (2017). Effect of biochar on soil CO2 production. Acta Fytotechnica et Zootechnica, 20(4), 72–77.
]Search in Google Scholar
[
Horák, J., Kotuš, T., Toková, L., Aydın, E., Igaz, D., & Šimanský, V. (2021). A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application. Agronomy, 11, 582. https://doi.org/10.3390/agronomy11030582
]Search in Google Scholar
[
Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezáková, Z., Dodok, R., Grečo, V., Chlpík, J., Kobza, J., Lištjak, M., Mališ, J., Píš, V., Schlosserová, J., Slávik, O., Styk, J., & Širáň, M. (2011). The uniform methods of soil analysis.VÚPOP,Bratislava, (in Slovak).
]Search in Google Scholar
[
Igaz, D., Šimanský, V., Horák, J., Aydin, E., Domanová, J., Rodný, M., & Buchkina, N. (2018). Can a single dose of biochar affected soil physical and chemical characteristics? Journal of Hydrology and Hydromechanics, 66(2), 421–428. https://doi.org/10.2478/john-2018-0034
]Search in Google Scholar
[
IUSS Working Group (WRB). (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps (World Soil Resources Reports No. 106). FAO.
]Search in Google Scholar
[
Jin, Z., Chen, C., Chen, X., Jiang, F., Hopkins, I., & Zhang, X., Benavides, J. (2019). Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: a five-year field trial in upland red soil, China. Field Crops Research, 232, 77–87. https://doi.org/10.1016/j.fcr.2018.12.013
]Search in Google Scholar
[
Juriga, M., & Šimanský, V. (2018) Effect of biochar on soil structure – review. Acta Fytotechnica et Zootechnica, 21(1), 11–19. https://doi.org/10.15414/afz.2018.21.01.11-1
]Search in Google Scholar
[
Juriga, M., & Šimanský, V. (2019). Effect of biochar and its reapplication on soil pH and sorption properties of silt loam Haplic Luvisol. Acta Horticulturae et Regiotecturae, 22(2), 65-70. https://doi.org/10.2478/ahr-2019-0012
]Search in Google Scholar
[
Lehmann, J., Rillig, M. C., Thies, J., Masiell, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota, A review. Soil Biology & Biochemistry, 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
]Search in Google Scholar
[
Li, H., Dong, X., da Silva, E. B., de Oliviera, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072
]Search in Google Scholar
[
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of American Journal, 70, 1719–1730. https://doi.org/10.2136/sssaj2005.0383
]Search in Google Scholar
[
Mikajlo, I., Lerch, T. Z., Louvel, B., Hynšt, J., Záhora, J., & Pourrut, B. (2024). Composted biochar versus compost with biochar: efects on soil properties and plant growth. Biochar, 6, 85 https://doi.org/10.1007/s42773-024-00379-2
]Search in Google Scholar
[
Novak, J. M., Busscher, W. J., Wats, D. W., Laird, D. A., Ammenda, M. A., & Niandou, M. A. S. (2009). Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 154, 281–288. https://doi.org/10.1016/j.geoderma.2009.10.014
]Search in Google Scholar
[
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility Soils, 48, 271–284. https://doi.org/10.1007/s00374-011-0624-7
]Search in Google Scholar
[
Rechberger, M. V., Kloss, S., Rennhofer, H., Tintner, J., Watzinger, A., Soja, G., Lichtenegger, H., & Zehetner, F. (2017). Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil. Carbon, 115, 209–219. https://doi.org/10.1016/j.carbon.2016.12.096
]Search in Google Scholar
[
Šimanský, V. (2016). Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotechnica et Zootechnica, 19, 129–138. http://dx.doi.org/10.15414/afz.2016.19.04.129-138
]Search in Google Scholar
[
Šimanský, V., Horák, J., & Bordoloi, S. (2022) Improving the soil physical properties and relationships between soil properties in arable soils of contrasting texture enhancement using biochar substrates: Case study in Slovakia. Geoderma Regional, 28. https://doi.org/10.1016/j.geodrs.2021.e00443
]Search in Google Scholar
[
Wang, L., Gao, Ch., Yang, K., Sheng, Y., Xu, J., Zhao, Y., Lou, J., Sun, R., & Zhu, L. (2021). Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions. Science of the Total Environment, 782. https://doi.org/10.1016/j.scitotenv.2021.146824
]Search in Google Scholar