Zacytuj

Agrios, G. N. (2005). Plant Pathology. (5th ed.), Elsevier Academic Press, Amsterdam, 26–27, 398–401.Search in Google Scholar

Aguilar-González, A. E., Palou, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innovative Food Science and Emerging Technologies, 32, 181–185. https://doi.org/10.1016/j.ifset.2015.09.003Search in Google Scholar

Aguilar-González, A. E., Palou, E., & López-Malo, A. (2017). Response of Aspergillus niger Inoculated on Tomatoes Exposed to Vapor Phase Mustard Essential Oil for Short or Long Periods and Sensory Evaluation of Treated Tomatoes. Journal of Food Quality, 2017, 1–7. https://doi.org/10.1155/2017/4067856Search in Google Scholar

Bhat, R., Alias, A. K., & Paliyath, G. (2012). Progress in Food Preservation. John Wiley & Sons (630 p.).Search in Google Scholar

Chang, K. F., Ahmed, H. U., Hwang, S. F., Gossen, B. D., Strelkov, S. E., Blade, S. F., & Turnbull, G. D. (2007). Sensitivity of field populations of Ascochyta rabiei to chlorothalonil, mancozeb and Pyraclostrobin fungicides and effect of strobilurin fungicides on the progress of Ascochyta blight of chickpea. Canadian Journal of Plant Science, 87(4), 937–944. https://doi.org/10.4141/CJPS07019Search in Google Scholar

Cuppels, D. A., & Elmhirst, J. (1999). Disease Development and Changes in the Natural Pseudomonas syringae pv. tomato Populations on Field Tomato Plants. Plant Disease, 83(8), 759–764. https://doi.org/10.1094/PDIS.1999.83.8.759Search in Google Scholar

Da Cruz Cabral, L., Fernández Pinto, V., & Patriarca, A. (2013). Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166(1), 1–14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026Search in Google Scholar

Du, W.-X., Olsen, C. W., Avena-Bustillos, R. J., McHugh, T. H., Levin, C. E., Mandrell, R., & Friedman, M. (2009). Antibacterial Effects of Allspice, Garlic, and Oregano Essential Oils in Tomato Films Determined by Overlay and Vapor-Phase Methods. Journal of Food Science, 74(7), M390–M397. https://doi.org/10.1111/j.1750-3841.2009.01289.xSearch in Google Scholar

Edris, A. E., & Farrag, E. S. (2003). Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Food/Nahrung, 47(2), 117–121. https://doi.org/10.1002/food.200390021Search in Google Scholar

Goudjil, M., Segni, L., Souad, Z., Hammoya, F., Messaoud Bachagha, B., Mehani, M., & Bencheikh, S. E. (2016). Bioactivity of Laurus Nobilis and Mentha piperita essential oils on some phytopathogenic fungi (in vitro assay). Journal of Materials and Environmental Science, 7, 4525-4533.Search in Google Scholar

Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, 124(1), 91–97. https://doi.org/10.1016/j.ijfoodmicro.2008.02.028Search in Google Scholar

Işcan, G., Kïrïmer, N., Kürkcüoğlu, M., Hüsnü Can Başer, & Demïrcï, F. (2002). Antimicrobial Screening of Mentha piperita Essential Oils. Journal of Agricultural and Food Chemistry, 50(14), 3943–3946. https://doi.org/10.1021/jf011476kSearch in Google Scholar

Jeyakumar, E., Lawrence, R., & Pal, T. (2011). Comparative evaluation in the efficacy of peppermint (Mentha piperita) oil with standards antibiotics against selected bacterial pathogens. Asian Pacific Journal of Tropical Biomedicine, 1(2), S253–S257. https://doi.org/10.1016/S2221-1691(11)60165-2Search in Google Scholar

Kačániová, M., Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., Kunová, S., Hanus, P., Bakay, L., Zagrobelna, E., Kluz, M., & Kowalczewski, P. Ł. (2022). Assessment of Ocimum basilicum Essential Oil Anti-Insect Activity and Antimicrobial Protection in Fruit and Vegetable Quality. Plants, 11(8), 1030. https://doi.org/10.3390/plants11081030Search in Google Scholar

Lee, G., Kim, Y., Kim, H., Beuchat, L. R., & Ryu, J.-H. (2018). Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts. International Journal of Food Microbiology, 265, 49–54. https://doi.org/10.1016/j.ijfoodmicro.2017.11.001Search in Google Scholar

Louws, F. J., Wilson, M., Campbell, H. L., Cuppels, D. A., Jones, J. B., Shoemaker, P. B., Sahin, F., & Miller, S. A. (2001). Field Control of Bacterial Spot and Bacterial Speck of Tomato Using a Plant Activator. Plant Disease, 85(5), 481–488. https://doi.org/10.1094/PDIS.2001.85.5.481Search in Google Scholar

Moreira, M. R., Ponce, A. G., del Valle, C. E., & Roura, S. I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT - Food Science and Technology, 38(5), 565–570. https://doi.org/10.1016/j.lwt.2004.07.012Search in Google Scholar

Murbach Teles Andrade, B. F., Nunes Barbosa, L., da Silva Probst, I., & Fernandes Júnior, A. (2014). Antimicrobial activity of essential oils. Journal of Essential Oil Research, 26(1), 34–40. https://doi.org/10.1080/10412905.2013.860409Search in Google Scholar

Nadjib, B. M., Amine, F. M., Abdelkrim, K., Fairouz, S., & Maamar, M. (2014). Liquid and vapour phase antibacterial activity of Eucalyptus globulus essential oil = susceptibility of selected respiratory tract pathogens. American Journal of Infectious Diseases, 10(3), 105–117. https://doi.org/10.3844/ajidsp.2014.105.117Search in Google Scholar

Nielsen, P. V., & Rios, R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. International Journal of Food Microbiology, 60(2–3), 219–229. https://doi.org/10.1016/S0168-1605(00)00343-3Search in Google Scholar

Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science, 73(2), 236–244. https://doi.org/10.1016/j.meatsci.2005.11.019Search in Google Scholar

Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential Oils: Sources of Antimicrobials and Food Preservatives. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02161Search in Google Scholar

Paranagama, P. A., Abeysekera, K. H. T., Abeywickrama, K., & Nugaliyadde, L. (2003). Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (Lemongrass) against Aspergillus flavus Link. Isolated from stored rice. Letters in Applied Microbiology, 37(1), 86–90. https://doi.org/10.1046/j.1472-765X.2003.01351.xSearch in Google Scholar

Perricone, M., Arace, E., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2015). Bioactivity of essential oils: A review on their interaction with food components. Frontiers in Microbiology, 6. https://www.frontiersin.org/articles/10.3389/fmicb.2015.00076Search in Google Scholar

Phillips, C. A., Laird, K., & Allen, S. C. (2012). The use of Citri-VTM® – An antimicrobial citrus essential oil vapour for the control of Penicillium chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Research International, 47(2), 310–314. https://doi.org/10.1016/j.foodres.2011.07.035Search in Google Scholar

Price, P. P., Purvis, M. A., Cai, G., Padgett, G. B., Robertson, C. L., Schneider, R. W., & Albu, S. (2015). Fungicide Resistance in Cercospora kikuchii, a Soybean Pathogen. Plant Disease, 99(11), 1596-1603. https://doi.org/10.1094/PDIS-07-14-0782-RESearch in Google Scholar

Rasooli, I., & Rezaei, M. B. (2002). Bioactivity and Chemical Properties of Essential Oils from Zataria multiflora Boiss and Mentha longifolia (L.) Huds. Journal of Essential Oil Research, 14(2), 141–146. https://doi.org/10.1080/10412905.2002.9699800Search in Google Scholar

Regnier, T., Combrinck, S., & Du Plooy, W. (2010). Improvement of postharvest quality of subtropical fruits using Lippia scaberrima essential oil. Acta Horticulturae, 877, 1567–1573. https://doi.org/10.17660/ActaHortic.2010.877.216Search in Google Scholar

Rhouma, A., Ben Daoud, H., Ghanmi, S., ben Salah, H., Romdhane, M., & Demak, M. (2009). Antimicrobial Activities of Leaf Extracts of Pistacia and Schinus Species Against Some Plant Pathogenic Fungi and Bacteria. Journal of Plant Pathology, 91(2), 339-345. https://www.jstor.org/stable/41998628Search in Google Scholar

Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., & Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91(4), 621-632. https://doi.org/10.1016/j.foodchem.2004.06.031Search in Google Scholar

Serrano, M., Martínez-Romero, D., Castillo, S., Guillén, F., & Valero, D. (2005). The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innovative Food Science and Emerging Technologies, 6(1), 115–123. https://doi.org/10.1016/j.ifset.2004.09.001Search in Google Scholar

Shao, X., Wang, H., Xu, F., & Cheng, S. (2013). Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biology and Technology, 77, 94–101. https://doi.org/10.1016/j.postharvbio.2012.11.010Search in Google Scholar

Sharifi-Rad, M., Nazaruk, J., Polito, L., Morais-Braga, M. F. B., Rocha, J. E., Coutinho, H. D. M., Salehi, B., Tabanelli, G., Montanari, C., del Mar Contreras, M., Yousaf, Z., Setzer, W. N., Verma, D. R., Martorell, M., Sureda, A., & Sharifi-Rad, J. (2018). Matricaria genus as asource of antimicrobial agents: From farm to pharmacy and food applications. Microbiological Research, 215, 76–88. https://doi.org/10.1016/j.micres.2018.06.010Search in Google Scholar

Singh, P., & Pandey, A. K. (2018). Prospective of Essential Oils of the Genus Mentha as Biopesticides: A Review. Frontiers in Plant Science, 9, 1295. https://doi.org/10.3389/fpls.2018.01295Search in Google Scholar

Sivropoulou, A., Kokkini, S., Lanaras, T., & Arsenakis, M. (1995). Antimicrobial activity of mint essential oils. Journal of Agricultural and Food Chemistry, 43(9), 2384–2388. https://doi.org/10.1021/jf00057a013Search in Google Scholar

Skandamis, P. N., & Nychas, G.-J. E. (2002). Preservation of fresh meat with active and modified atmosphere packaging conditions. International Journal of Food Microbiology, 79(1), 35–45. https://doi.org/10.1016/S0168-1605(02)00177-0Search in Google Scholar

Soković, M., & van Griensven, L. J. L. D. (2006). Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology, 116(3), 211–224. https://doi.org/10.1007/s10658-006-9053-0Search in Google Scholar

Sonker, N., Pandey, A. K., & Singh, P. (2015). Efficiency of Artemisia nilagirica (Clarke) Pamp. Essential oil as a mycotoxicant against postharvest mycobiota of table grapes: Artemisia nilagirica oil as a mycotoxicant for table grapes. Journal of the Science of Food and Agriculture, 95(9), 1932–1939. https://doi.org/10.1002/jsfa.6901Search in Google Scholar

Tassou, C. C., Drosinos, E. H., & Nychas, G. J. E. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4° and 10°C. Journal of Applied Bacteriology, 78(6), 593–600. https://doi.org/10.1111/j.1365-2672.1995.tb03104.xSearch in Google Scholar

Teixeira, B., Marques, A., Ramos, C., Batista, I., Serrano, C., Matos, O., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2012). European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Industrial Crops and Products, 36(1), 81–87. https://doi.org/10.1016/j.indcrop.2011.08.011Search in Google Scholar

Vidhyasekaran, P. (2002). Bacterial Disease Resistance in Plants: Molecular Biology and Biotechnological Applications. CRC Press, 464 pp.Search in Google Scholar

Xu, J., Zhou, F., Ji, B.-P., Pei, R.-S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3), 174–179. https://doi.org/10.1111/j.1472-765X.2008.02407.xSearch in Google Scholar

Yadav, S. R., Sandeep, K., & Anupam, D. (2006). Antifungal properties of essential oil of Mentha spicata L. var. MSS-5. Indian Journal of Crop Science, 1(2), 197–200. https://indianjournals.com/ijor.aspx?target=ijor:ijocs&volume=1&issue=1and2&article=045Search in Google Scholar

Ziedan, E. S., & Farrag, E. (2008). Fumigation of peach fruits with essential oils to control postharvest decay. Research Journal of Agriculture and Biological Sciences, 4, 512–519.Search in Google Scholar

eISSN:
1338-5259
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Green and Sustainable Technology