Zacytuj

BERBEGAL, C. – FRAGASSO, M. – RUSSO, P. – BIMBO, F. – GRIECO, F. – SPANO, G. – CAPOZZI, V. Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. In Fermentation, vol. 5, 2019, pp. 85.10.3390/fermentation5040085Search in Google Scholar

CAPOZZI, V. – FRAGASSO, M. – ROMANIELLO, R. – BERBEGAL, C. – RUSSO, P. – SPANO, G. Spontaneous Food Fermentations and Potential Risks for Human Health. In Fermentation, vol. 3, 2017, pp. 49.10.3390/fermentation3040049Search in Google Scholar

DOLS-LAFARGUE, M. Polysaccharide Production by Wine Lactic Acid Bacteria: Negative Trait or Potential Advantage? A Review. In Applied Microbiology, vol. 4, 2018, pp. 143.10.4172/2471-9315.1000143Search in Google Scholar

FLEET, G.H. Wine. In Food Microbiology Fundamentals & Frontiers ed. DOYLE, M.P. – BEUCHAT, L.R. – MONTVILLE, T.J. Washington DC : ASM Press, 2001, pp. 747–772.Search in Google Scholar

FUGELSANG, K.C. – EDWARDS, C.G. Wine Microbiology: Practical Applications and Procedures. 2nd ed. New York, USA : Springer, 2007, 393 p.10.1007/978-0-387-33349-6Search in Google Scholar

GARRITY, G.M. – BELL, J.A. – LILBURN, T.G. Taxonomic outline of the Procaryotes. Bergey‘s Manual of Systematic Bacteriology. 2nd ed., New York : Springer-Verlag, 2004.Search in Google Scholar

KAČÁNIOVÁ, M. – HLEBA, L. – POCHOP, J. – KADASI-HORAKOVA, M. – FIKSELOVA, M. – ROVNÁ, K. Determination of wine microbiota using classical method, polymerase chain method and Step One Real-Time PCR during fermentation process. In Journal of Environmental Science and Health, Part B, vol. 47, 2012, pp. 571–578.10.1080/03601234.2012.66575022494381Search in Google Scholar

KÁNTOR, A. – KAČÁNIOVÁ, M. – KLUZ, M. Natural microflora of wine grape berries. In Journal of Microbiology, Biotechnology and Food Science, vol. 4, 2015, no. 1, pp. 32–36.10.15414/jmbfs.2015.4.special1.32-36Search in Google Scholar

MAKAROVA, K. – SLESAREV, A. – WOLF, Y. – SOROKINE, A. – MIRKIN, B. – KOONIN, E. – PAVLOV, A. – PAVLOVA, N. – KARAMYCHEV, V. – POLOUCHINE, N. – SHAKHOVA, V. – GRIGORIEV, I. – LOU, Y. – ROHKSAR, D. – LUCAS, S. – HUANG, K. – GOODSTEIN, D.M. – HAWKINS, T. – PLENGVIDHY, V. – WELKER, D. – HUGHES, J. – GOH, Y. – BENSON, A. – BALDWIN, K. – LEE, J.H. – DIAZ-MUNIZ, I. – DOSTI, B. – SMEIANOV, V. – WECHTER, W. – BARABOTE, R. – LORCA, G. – ALTERMANN, E. – BARRANGOU, R. – GANESAN, B. – XIEF, Y. – RAWSTHORNE, H. – TAMIR, D. – PARKER, C. – BREIDT, F. – BROADBENT, J. – HUTKINS, R. – O‘SULLIVAN, D. – STEELE, J. – UNLU, G. – SAIER, M. – KLAENHAMMER, T. – RICHARDSON, P. – KOZYAVKIN, S. – WEIMER, B. – MILLS D. Comparative genomics of lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America, vol. 42, 2006, pp. 15611–15616.10.1073/pnas.0607117103162287017030793Search in Google Scholar

MANES-LAZARO, R. – FERRER, S. – ROSSELLO-MORA2AND, R. – PARDO, I. Lactobacillus oeni sp. nov., from wine. In International Journal of Systematic Evolutionary Microbiology, vol. 59, 2009, pp. 2010–2014.10.1099/ijs.0.007567-019567555Search in Google Scholar

MIRANDA-CASTILLEJA, D.E. – MARTINEZ-PENICHE, R.A. – ALDRETETAPIA, J.A. – SOTO-MUNOZ, L. – ITURRIAGA, M.H. – PACHECOAGUILAR, J.R. – ARVIZU-MEDRANO, S.M. Distribution of native lactic Acid Bacteria in Wineries of Queretaro, Mexico and Their Resistance to Wine-Like Conditions. In Frontiers in Microbiology, vol. 7, 2016, pp. 1769.10.3389/fmicb.2016.01769510054727877164Search in Google Scholar

MTSHALI, P.S. – DIVOL, B. – VAN RENSBURG, P. – DU TOIT, M. Genetic screening of wine-related enzymes in Lactobacillus species isolated from South African wines. In Journal of Applied Microbiology, vol. 108, 2009, no. 4, pp. 1389–1397.10.1111/j.1365-2672.2009.04535.x19793136Search in Google Scholar

POZO-BAYON, M.A. – G-ALEGRIA, E. – POLO, M.C. – TENORIO, C. – MARTÍN-ÁLVAREZ, P.J. – CALVO DE LA BANDA, M.T. – RUIZLARREA, F. – MORENO ARRIBAS, M.V. Wine volatile and amino acid composition after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. In Journal of Agriculture and Food Chemistry, vol. 53, 2005, pp. 8729–8735.10.1021/jf050739y16248578Search in Google Scholar

RODRÍGUEZ-SÁNCHEZ, B. – ALCALÁ, L. – MARÍN, M. – RUÍZ, A. – ALONSO, E. – BOUZA, E. Evaluation of MALDI-TOF MS (Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry) for routine identification of anaerobic bacteria. In Anaerobe, vol. 42, 2016, pp. 101–107.10.1016/j.anaerobe.2016.09.00927702604Search in Google Scholar

RUIZ, P. – IZQUIERDO, P.M. – SESE‘NA, S. – PALOP, M.L. Analysis of lactic acid bacteria populations during spontaneous malolactic fermentation of Tempranillo wines at five wineries during two consecutive vintages. In Food Control, vol. 21, 2010, no. 1, pp. 70–75.10.1016/j.foodcont.2009.04.002Search in Google Scholar

SPANO, G. – MASSA, S. Environmental stress response in lactic acid bacteria: beyond Bacillus subtillis. In Critical Review in Microbiology, vol. 32, 2006, pp. 77–86.10.1080/1040841060070980016809231Search in Google Scholar

eISSN:
1338-5259
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Green and Sustainable Technology