Otwarty dostęp

Circumventing vascular barriers for effective immunotherapy in brain tumors – focus on glioblastoma

  
06 sie 2025

Zacytuj
Pobierz okładkę

Jamshidi P, Brat DJ. The 2021 WHO classification of central nervous system tumors: what neurologists need to know. Curr Opin Neurol. 2022;35: 764–71. JamshidiP BratDJ The 2021 WHO classification of central nervous system tumors: what neurologists need to know Curr Opin Neurol 2022 35 764 71 Search in Google Scholar

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, et al. DNA methylation-based classification of central nervous system tumors. Nature. 2018;555: 469–74. CapperD JonesDTW SillM HovestadtV SchrimpfD SturmD KoelscheC SahmF ChavezL ReussDE DNA methylation-based classification of central nervous system tumors Nature 2018 555 469 74 Search in Google Scholar

Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas – implications for classification and therapy. Nat Rev Clin Oncol. 2017;14: 434–52. ReifenbergerG WirschingHG Knobbe-ThomsenCB WellerM Advances in the molecular genetics of gliomas – implications for classification and therapy Nat Rev Clin Oncol 2017 14 434 52 Search in Google Scholar

Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22: 1073–113. WenPY WellerM LeeEQ AlexanderBM Barnholtz-SloanJS BarthelFP BatchelorTT BindraRS ChangSM ChioccaEA Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions Neuro Oncol 2020 22 1073 113 Search in Google Scholar

Wyss J, Frank NA, Soleman J, Scheinemann K. Novel pharmacological treatment options in pediatric glioblastoma – a systematic review. Cancers (Basel). 2022;14. WyssJ FrankNA SolemanJ ScheinemannK Novel pharmacological treatment options in pediatric glioblastoma – a systematic review Cancers (Basel) 2022 14 Search in Google Scholar

Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, Abate F, Liu Z, Elliott O, Shin YJ, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48: 768–76. WangJ CazzatoE LadewigE FrattiniV RosenbloomDI ZairisS AbateF LiuZ ElliottO ShinYJ Clonal evolution of glioblastoma under therapy Nat Genet 2016 48 768 76 Search in Google Scholar

Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9: 157–73. PhillipsHS KharbandaS ChenR ForrestWF SorianoRH WuTD MisraA NigroJM ColmanH SoroceanuL Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis Cancer Cell 2006 9 157 73 Search in Google Scholar

Garnier D, Meehan B, Kislinger T, Daniel P, Sinha A, Abdulkarim B, Nakano I, Rak J, et al. Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro Oncol. 2018;20: 236–48. GarnierD MeehanB KislingerT DanielP SinhaA AbdulkarimB NakanoI RakJ Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization Neuro Oncol 2018 20 236 48 Search in Google Scholar

Weiss T, Schneider H, Silginer M, Steinle A, Pruschy M, Polić B, Weller M, Roth P. NKG2D-dependent antitumor effects of chemotherapy and radiotherapy against glioblastoma. Clin Cancer Res. 2018;24: 882–95. WeissT SchneiderH SilginerM SteinleA PruschyM PolićB WellerM RothP NKG2D-dependent antitumor effects of chemotherapy and radiotherapy against glioblastoma Clin Cancer Res 2018 24 882 95 Search in Google Scholar

Meehan B, Adnani L, Zhu X, Tawil N, Garnier D, Nakano I, Huang S, Rak J. Curative timed NK cell-based immunochemotherapy aborts brain tumor recurrence driven by mesenchymal glioma stem cells. Acta Neuropathol Commun. 2025;13: 64. MeehanB AdnaniL ZhuX TawilN GarnierD NakanoI HuangS RakJ Curative timed NK cell-based immunochemotherapy aborts brain tumor recurrence driven by mesenchymal glioma stem cells Acta Neuropathol Commun 2025 13 64 Search in Google Scholar

Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, Aghi MK, Butowski NA. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neurooncol Adv. 2021;3: vdab100. HaddadAF YoungJS AmaraD BergerMS RaleighDR AghiMK ButowskiNA Mouse models of glioblastoma for the evaluation of novel therapeutic strategies Neurooncol Adv 2021 3 vdab100 Search in Google Scholar

Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol. 2024;13: 40. ShenY ThngDKH WongALA TohTB Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review Exp Hematol Oncol 2024 13 40 Search in Google Scholar

Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol. 2024;21: 1354–75. LiuY ZhouF AliH LathiaJD ChenP Immunotherapy for glioblastoma: current state, challenges, and future perspectives Cell Mol Immunol 2024 21 1354 75 Search in Google Scholar

Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164: 550–63. CeccarelliM BarthelFP MaltaTM SabedotTS SalamaSR MurrayBA MorozovaO NewtonY RadenbaughA PagnottaSM Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma Cell 2016 164 550 63 Search in Google Scholar

Chittiboina P, Connor DE Jr, Caldito G, Quillin JW, Wilson JD, Nanda A. Occult tumors presenting with negative imaging: analysis of the literature. J Neurosurg. 2012;116: 1195–203. ChittiboinaP ConnorDEJr CalditoG QuillinJW WilsonJD NandaA Occult tumors presenting with negative imaging: analysis of the literature J Neurosurg 2012 116 1195 203 Search in Google Scholar

Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344: 1396–401. PatelAP TiroshI TrombettaJJ ShalekAK GillespieSM WakimotoH CahillDP NahedBV CurryWT MartuzaRL Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma Science 2014 344 1396 401 Search in Google Scholar

Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB, et al. Identification of human brain tumor initiating cells. Nature. 2004;432: 396–401. SinghSK HawkinsC ClarkeID SquireJA BayaniJ HideT HenkelmanRM CusimanoMD DirksPB Identification of human brain tumor initiating cells Nature 2004 432 396 401 Search in Google Scholar

Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A. 2013;110: 8644–49. MaoP JoshiK LiJ KimSH LiP Santana-SantosL LuthraS ChandranUR BenosPV SmithL Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3 Proc Natl Acad Sci U S A 2013 110 8644 49 Search in Google Scholar

Bastola S, Pavlyukov MS, Yamashita D, Ghosh S, Cho H, Kagaya N, Zhang Z, Minata M, Lee Y, Sadahiro H, et al. Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat Commun. 2020;11: 4660. BastolaS PavlyukovMS YamashitaD GhoshS ChoH KagayaN ZhangZ MinataM LeeY SadahiroH Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy Nat Commun 2020 11 4660 Search in Google Scholar

Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178: 835–49.e21. NeftelC LaffyJ FilbinMG HaraT ShoreME RahmeGJ RichmanAR SilverbushD ShawML HebertCM An integrative model of cellular states, plasticity, and genetics for glioblastoma Cell 2019 178 835 49.e21 Search in Google Scholar

Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, et al. Brain tumor cells interconnect to a functional and resistant network. Nature. 2015;528: 93–98. OsswaldM JungE SahmF SoleckiG VenkataramaniV BlaesJ WeilS HorstmannH WiestlerB SyedM Brain tumor cells interconnect to a functional and resistant network Nature 2015 528 93 98 Search in Google Scholar

Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakfield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018;14: 482–95. BroekmanML MaasSLN AbelsER MempelTR KrichevskyAM BreakfieldXO Multidimensional communication in the microenvirons of glioblastoma Nat Rev Neurol 2018 14 482 95 Search in Google Scholar

Hausmann D, Hoffmann DC, Venkataramani V, Jung E, Horschitz S, Tetzlaff SK, Jabali A, Hai L, Kessler T, Azoŕin DD, et al. Autonomous rhythmic activity in glioma networks drives brain tumor growth. Nature. 2023;613: 179–86. HausmannD HoffmannDC VenkataramaniV JungE HorschitzS TetzlaffSK JabaliA HaiL KesslerT AzoŕinDD Autonomous rhythmic activity in glioma networks drives brain tumor growth Nature 2023 613 179 86 Search in Google Scholar

Ricklefs F, Mineo M, Rooj AK, Nakano I, Charest A, Weissleder R, Breakefield XO, Chiocca EA, Godlewski J, Bronisz A. Extracellular vesicles from high-grade glioma exchange diverse pro-oncogenic signals that maintain intratumoral heterogeneity. Cancer Res. 2016;76: 2876–81. RicklefsF MineoM RoojAK NakanoI CharestA WeisslederR BreakefieldXO ChioccaEA GodlewskiJ BroniszA Extracellular vesicles from high-grade glioma exchange diverse pro-oncogenic signals that maintain intratumoral heterogeneity Cancer Res 2016 76 2876 81 Search in Google Scholar

Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumor cells. Nat Cell Biol. 2008;10: 619–24. Al-NedawiK MeehanB MicallefJ LhotakV MayL GuhaA RakJ Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumor cells Nat Cell Biol 2008 10 619 24 Search in Google Scholar

Montermini L, Meehan B, Garnier D, Lee WJ, Lee TH, Guha A, Al-Nedawi K, Rak J. Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content. J Biol Chem. 2015;290: 24534–46. MonterminiL MeehanB GarnierD LeeWJ LeeTH GuhaA Al-NedawiK RakJ Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content J Biol Chem 2015 290 24534 46 Search in Google Scholar

Spinelli C, Adnani L, Meehan B, Montermini L, Huang S, Kim M, Nishimura T, Croul SE, Nakano I, Riazalhosseini Y, et al. Mesenchymal glioma stem cells trigger vasectasia-distinct neovascularization process stimulated by extracellular vesicles carrying EGFR. Nat Commun. 2024;15: 2865. SpinelliC AdnaniL MeehanB MonterminiL HuangS KimM NishimuraT CroulSE NakanoI RiazalhosseiniY Mesenchymal glioma stem cells trigger vasectasia-distinct neovascularization process stimulated by extracellular vesicles carrying EGFR Nat Commun 2024 15 2865 Search in Google Scholar

Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10: 1470–76. SkogJ WürdingerT van RijnS MeijerDH GaincheL Sena-EstevesM CurryWTJr CarterBS KrichevskyAM BreakefieldXO Glioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers Nat Cell Biol 2008 10 1470 76 Search in Google Scholar

Figueroa JM, Skog J, Akers J, Li H, Komotar R, Jensen R, Ringel F, Yang I, Kalkanis S, Thompson R. Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients. Neuro Oncol. 2017;19: 1494–502. FigueroaJM SkogJ AkersJ LiH KomotarR JensenR RingelF YangI KalkanisS ThompsonR Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients Neuro Oncol 2017 19 1494 502 Search in Google Scholar

Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D'Asti E, Rak J. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol. 2017;67: 11–22. ChoiD LeeTH SpinelliC ChennakrishnaiahS D'AstiE RakJ Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation Semin Cell Dev Biol 2017 67 11 22 Search in Google Scholar

Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics. 2018;17: 1948–64. ChoiD MonterminiL KimDK MeehanB RothFP RakJ The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells Mol Cell Proteomics 2018 17 1948 64 Search in Google Scholar

Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, Mörgelin M, Bourseau-Guilmain E, Bengzon J, Belting M. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110: 7312–17. KucharzewskaP ChristiansonHC WelchJE SvenssonKJ FredlundE RingnérM MörgelinM Bourseau-GuilmainE BengzonJ BeltingM Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development Proc Natl Acad Sci U S A 2013 110 7312 17 Search in Google Scholar

Rak J. Extracellular vesicles – biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol. 2013;21. RakJ Extracellular vesicles – biomarkers and effectors of the cellular interactome in cancer Front Pharmacol 2013 21 Search in Google Scholar

Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D. Cancer neuroscience: state of the field, emerging directions. Cell. 2023;186: 1689–707. WinklerF VenkateshHS AmitM BatchelorT DemirIE DeneenB GutmannDH Hervey-JumperS KunerT MabbottD Cancer neuroscience: state of the field, emerging directions Cell 2023 186 1689 707 Search in Google Scholar

Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31: 326–41. QuailDF JoyceJA The microenvironmental landscape of brain tumors Cancer Cell 2017 31 326 41 Search in Google Scholar

Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023;8: 217. WuD ChenQ ChenX HanF ChenZ WangY The blood-brain barrier: structure, regulation, and drug delivery Signal Transduct Target Ther 2023 8 217 Search in Google Scholar

Zagzag D, Friedlander DR, Margolis B, Grumet M, Semenza GL, Zhong H, Simons JW, Holash J, Wiegand SJ, Yancopoulos GD. Molecular events implicated in brain tumor angiogenesis and invasion. Pediatr Neurosurg. 2000;33: 49–55. ZagzagD FriedlanderDR MargolisB GrumetM SemenzaGL ZhongH SimonsJW HolashJ WiegandSJ YancopoulosGD Molecular events implicated in brain tumor angiogenesis and invasion Pediatr Neurosurg 2000 33 49 55 Search in Google Scholar

Cribaro GP, Saavedra-López E, Romarate L, Mitxitorena I, Díaz LR, Casanova PV, Roig-Martínez M, Gallego JM, Perez-Vallés A, Barcia C. Three-dimensional vascular microenvironment landscape in human glioblastoma. Acta Neuropathol Commun. 2021;9: 24. CribaroGP Saavedra-LópezE RomarateL MitxitorenaI DíazLR CasanovaPV Roig-MartínezM GallegoJM Perez-VallésA BarciaC Three-dimensional vascular microenvironment landscape in human glioblastoma Acta Neuropathol Commun 2021 9 24 Search in Google Scholar

Burdett KB, Unruh D, Drumm M, Steffens A, Lamano J, Judkins J, Schwartz M, Javier R, Amidei C, Lipp ES, et al. Determining venous thromboembolism risk in patients with adult-type diffuse glioma. Blood. 2023;141: 1322–36. BurdettKB UnruhD DrummM SteffensA LamanoJ JudkinsJ SchwartzM JavierR AmideiC LippES Determining venous thromboembolism risk in patients with adult-type diffuse glioma Blood 2023 141 1322 36 Search in Google Scholar

Brat DJ, Van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest. 2004;84: 397–405. BratDJ Van MeirEG Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma Lab Invest 2004 84 397 405 Search in Google Scholar

Tehrani M, Friedman TM, Olson JJ, Brat DJ. Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol. 2008;18: 164–71. TehraniM FriedmanTM OlsonJJ BratDJ Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma Brain Pathol 2008 18 164 71 Search in Google Scholar

Tawil N, Bassawon R, Meehan B, Nehme A, Montermini L, Gayden T, De Jay N, Spinelli C, Chennakrishnaiah S, Choi D, et al. Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Adv. 2021;5: 1682–94. TawilN BassawonR MeehanB NehmeA MonterminiL GaydenT De JayN SpinelliC ChennakrishnaiahS ChoiD Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles Blood Adv 2021 5 1682 94 Search in Google Scholar

Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284: 1994–98. HolashJ MaisonpierrePC ComptonD BolandP AlexanderCR ZagzagD YancopoulosGD WiegandSJ Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF Science 1999 284 1994 98 Search in Google Scholar

Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumors. Nat Rev Neurosci. 2007;8: 610–22. JainRK di TomasoE DudaDG LoefflerJS SorensenAG BatchelorTT Angiogenesis in brain tumors Nat Rev Neurosci 2007 8 610 22 Search in Google Scholar

Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res. 2007;13: 1253–59. VredenburghJJ DesjardinsA HerndonJE2nd DowellJM ReardonDA QuinnJA RichJN SathornsumeteeS GururanganS WagnerM Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma Clin Cancer Res 2007 13 1253 59 Search in Google Scholar

Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem. 2001;49: 419–32. DvorakAM FengD The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle J Histochem Cytochem 2001 49 419 32 Search in Google Scholar

Rivera LB, Bergers G. Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol. 2015;36: 240–49. RiveraLB BergersG Intertwined regulation of angiogenesis and immunity by myeloid cells Trends Immunol 2015 36 240 49 Search in Google Scholar

Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20: 184–91. SarkariaJN HuLS ParneyIF PafundiDH BrinkmannDH LaackNN GianniniC BurnsTC KizilbashSH LaramyJK Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data Neuro Oncol 2018 20 184 91 Search in Google Scholar

Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, McLendon RE, Herndon JE 2nd, Jones LW, Kirkpatrick JP, et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw. 2011;9: 414–27. ReardonDA TurnerS PetersKB DesjardinsA GururanganS SampsonJH McLendonRE HerndonJE2nd JonesLW KirkpatrickJP A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma J Natl Compr Canc Netw 2011 9 414 27 Search in Google Scholar

Blumenthal DT, Kanner AA, Aizenstein O, Cagnano E, Greenberg A, Hershkovitz D, Ram Z, Bokstein F. Surgery for recurrent high-grade glioma after treatment with bevacizumab. World Neurosurg. 2018;110: e727–37. BlumenthalDT KannerAA AizensteinO CagnanoE GreenbergA HershkovitzD RamZ BoksteinF Surgery for recurrent high-grade glioma after treatment with bevacizumab World Neurosurg 2018 110 e727 37 Search in Google Scholar

Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16: 469–93. KuczynskiEA VermeulenPB PezzellaF KerbelRS ReynoldsAR Vessel co-option in cancer Nat Rev Clin Oncol 2019 16 469 93 Search in Google Scholar

Uroz M, Stoddard AE, Sutherland BP, Courbot O, Oria R, Li L, Ravasio CR, Ngo MT, Yang J, Tefft JB, et al. Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option. Nat Cell Biol. 2024;26: 2144–53. UrozM StoddardAE SutherlandBP CourbotO OriaR LiL RavasioCR NgoMT YangJ TefftJB Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option Nat Cell Biol 2024 26 2144 53 Search in Google Scholar

Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, et al. Tumor vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468: 824–28. Ricci-VitianiL PalliniR BiffoniM TodaroM InverniciG CenciT MairaG ParatiEA StassiG LaroccaLM Tumor vascularization via endothelial differentiation of glioblastoma stem-like cells Nature 2010 468 824 28 Search in Google Scholar

Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153: 139–52. ChengL HuangZ ZhouW WuQ DonnolaS LiuJK FangX SloanAE MaoY LathiaJD Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth Cell 2013 153 139 52 Search in Google Scholar

Rak J, Emmenegger U. In: Harrington LA, Tannock IF, Hill RP, Cescon DW, editors. The Basic Science of Oncology. 6th ed. New York: McGraw-Hill Education; 2021. RakJ EmmeneggerU In: HarringtonLA TannockIF HillRP CesconDW editors. The Basic Science of Oncology 6th ed. New York McGraw-Hill Education 2021 Search in Google Scholar

Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;554: 475–80. VanlandewijckM HeL MäeMA AndraeJ AndoK Del GaudioF NaharK LebouvierT LaviñaB GouveiaL A molecular atlas of cell types and zonation in the brain vasculature Nature 2018 554 475 80 Search in Google Scholar

Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, et al. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature. 2024;632: 603–13. WälchliT GhobrialM SchwabM TakadaS ZhongH SuntharalinghamS VetiskaS GonzalezDR WuR RehrauerH Single-cell atlas of the human brain vasculature across development, adulthood and disease Nature 2024 632 603 13 Search in Google Scholar

Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11: 69–82. CalabreseC PoppletonH KocakM HoggTL FullerC HamnerB OhEY GaberMW FinklesteinD AllenM KocakM A perivascular niche for brain tumor stem cells Cancer Cell 2007 11 69 82 Search in Google Scholar

Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, Yang K, Morton AR, Zhou W, Zhu Z, et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 2018;22: 514–28.e5. WangX PragerBC WuQ KimLJY GimpleRC ShiY YangK MortonAR ZhouW ZhuZ Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression Cell Stem Cell 2018 22 514 28.e5 Search in Google Scholar

Jung E, Osswald M, Ratliff M, Dogan H, Xie R, Weil S, Hoffmann DC, Kurz FT, Kessler T, Heiland S, et al. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat Commun. 2021;12: 1014. JungE OsswaldM RatliffM DoganH XieR WeilS HoffmannDC KurzFT KesslerT HeilandS Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma Nat Commun 2021 12 1014 Search in Google Scholar

Rak J. Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Med Hypotheses. 2006;66: 601–4. RakJ Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Med Hypotheses 2006 66 601 4 Search in Google Scholar

Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529: 316–25. RafiiS ButlerJM DingBS Angiocrine functions of organ-specific endothelial cells Nature 2016 529 316 25 Search in Google Scholar

Adnani L, Kassouf J, Meehan B, Spinelli C, Tawil N, Nakano I, Rak J. Angiocrine extracellular vesicles impose mesenchymal reprogramming upon proneural glioma stem cells. Nat Commun. 2022;13: 5494. AdnaniL KassoufJ MeehanB SpinelliC TawilN NakanoI RakJ Angiocrine extracellular vesicles impose mesenchymal reprogramming upon proneural glioma stem cells Nat Commun 2022 13 5494 Search in Google Scholar

Huinen ZR, Huijbers EJM, van Beijnum JR, Nowak-Sliwinska P, Griffioen AW. Anti-angiogenic agents - overcoming tumor endothelial cell anergy and improving immunotherapy outcomes. Nat Rev Clin Oncol. 2021;18: 527–40. HuinenZR HuijbersEJM van BeijnumJR Nowak-SliwinskaP GriffioenAW Anti-angiogenic agents - overcoming tumor endothelial cell anergy and improving immunotherapy outcomes Nat Rev Clin Oncol 2021 18 527 40 Search in Google Scholar

Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20: 651–68. WaldmanAD FritzJM LenardoMJ A guide to cancer immunotherapy: from T cell basic science to clinical practice Nat Rev Immunol 2020 20 651 68 Search in Google Scholar

Kroemer G, Zitvogel L. Immune checkpoint inhibitors. J Exp Med. 2021;218: e20201979. KroemerG ZitvogelL Immune checkpoint inhibitors J Exp Med 2021 218 e20201979 Search in Google Scholar

Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619: 707–15. BakerDJ AranyZ BaurJA EpsteinJA JuneCH CAR T therapy beyond cancer: the evolution of a living drug Nature 2023 619 707 15 Search in Google Scholar

Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, Martínez-Pérez A, Rodrigo JP, García-Pedrero JM, Gonzalez S. Chemo-immunotherapy: a new trend in cancer treatment. Cancers (Basel). 2023;15: 2912. Sordo-BahamondeC Lorenzo-HerreroS Gonzalez-RodriguezAP Martínez-PérezA RodrigoJP García-PedreroJM GonzalezS Chemo-immunotherapy: a new trend in cancer treatment Cancers (Basel) 2023 15 2912 Search in Google Scholar

Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, et al. Abscopal effect and drug-induced xenogenization: a strategic alliance in cancer treatment? Int J Mol Sci. 2021;22: 10672. FranzeseO TorinoF GiannettiE CioccoloniG AquinoA FaraoniI FuggettaMP De VecchisL GiulianiA KainaB Abscopal effect and drug-induced xenogenization: a strategic alliance in cancer treatment? Int J Mol Sci 2021 22 Search in Google Scholar

Andersen BM, Faust Akl C, Wheeler MA, Chiocca EA, Reardon DA, Quintana FJ. Glial and myeloid heterogeneity in the brain tumor microenvironment. Nat Rev Cancer. 2021;21: 786–802. AndersenBM Faust AklC WheelerMA ChioccaEA ReardonDA QuintanaFJ Glial and myeloid heterogeneity in the brain tumor microenvironment Nat Rev Cancer 2021 21 786 802 Search in Google Scholar

Ng AT, Steve T, Jamouss KT, Arham A, Kawtharani S, Assi HI. The challenges and clinical landscape of glioblastoma immunotherapy. CNS Oncol. 2024;13: 2415878. NgAT SteveT JamoussKT ArhamA KawtharaniS AssiHI The challenges and clinical landscape of glioblastoma immunotherapy CNS Oncol 2024 13 2415878 Search in Google Scholar

Eckert T, Zobaer MS, Boulos J, Alexander-Bryant A, Baker TG, Rivers C, Das A, Vandergrift WA, Martinez J, Zukas A, et al. Immune resistance in glioblastoma: understanding the barriers to ICI and CAR-T cell therapy. Cancers (Basel). 2025;17: 462. EckertT ZobaerMS BoulosJ Alexander-BryantA BakerTG RiversC DasA VandergriftWA MartinezJ ZukasA Immune resistance in glioblastoma: understanding the barriers to ICI and CAR-T cell therapy Cancers (Basel) 2025 17 462 Search in Google Scholar

Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. eBioMedicine. 2024;100: 104963. XiongZ RaphaelI OlinM OkadaH LiX KohanbashG Glioblastoma vaccines: past, present, and opportunities eBioMedicine 2024 100 104963 Search in Google Scholar

Gatto L, Di Nunno V, Tosoni A, Bartolini S, Ranieri L, Franceschi E. DCVax-L vaccination in patients with glioblastoma: real promise or negative trial? The debate is open. Cancers (Basel). 2023;15: 3251. GattoL Di NunnoV TosoniA BartoliniS RanieriL FranceschiE DCVax-L vaccination in patients with glioblastoma: real promise or negative trial? The debate is open Cancers (Basel) 2023 15 3251 Search in Google Scholar

Monje M, Mahdi J, Majzner R, Yeom KW, Schultz LM, Richards RM, Barsan V, Song KW, Kamens J, Baggott C, et al. Intravenous and intracranial GD2-CAR T cells for H3K27M(+) diffuse midline gliomas. Nature. 2025;637: 708–15. MonjeM MahdiJ MajznerR YeomKW SchultzLM RichardsRM BarsanV SongKW KamensJ BaggottC Intravenous and intracranial GD2-CAR T cells for H3K27M(+) diffuse midline gliomas Nature 2025 637 708 15 Search in Google Scholar

Schonfeld E, Choi J, Tran A, Kim LH, Lim M. The landscape of immune checkpoint inhibitor clinical trials in glioblastoma: a systematic review. Neurooncol Adv. 2024;6: vdae174. SchonfeldE ChoiJ TranA KimLH LimM The landscape of immune checkpoint inhibitor clinical trials in glioblastoma: a systematic review Neurooncol Adv 2024 6 vdae174 Search in Google Scholar

Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32: 42–56.e6. WangQ HuB HuX KimH SquatritoM ScarpaceL deCarvalhoAC LyuS LiP LiY Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment Cancer Cell 2017 32 42 56.e6 Search in Google Scholar

Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, Woroniecka K, Elsamadicy AA, Dechant CA, Kemeny HR, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018;24: 1459–68. ChongsathidkietP JacksonC KoyamaS LoebelF CuiX FarberSH WoronieckaK ElsamadicyAA DechantCA KemenyHR Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors Nat Med 2018 24 1459 68 Search in Google Scholar

Sabbagh A, Beccaria K, Ling X, Marisetty A, Ott M, Caruso H, Barton E, Kong LY, Fang D, Latha K, et al. Opening of the blood-brain barrier using low-intensity pulsed ultrasound enhances responses to immunotherapy in preclinical glioma models. Clin Cancer Res. 2021;27: 4325–37. SabbaghA BeccariaK LingX MarisettyA OttM CarusoH BartonE KongLY FangD LathaK Opening of the blood-brain barrier using low-intensity pulsed ultrasound enhances responses to immunotherapy in preclinical glioma models Clin Cancer Res 2021 27 4325 37 Search in Google Scholar

Adnani, L., Meehan, B., Kim, M., Choi, D., Rudd, C. E., Riazalhosseini, Y., & Rak, J. Immune cell infiltration into brain tumor microenvironment is mediated by Rab27-regulated vascular wall integrity. Science Advances 2025;11, 21, eadr6940. AdnaniL. MeehanB. KimM. ChoiD. RuddC. E. RiazalhosseiniY. RakJ. Immune cell infiltration into brain tumor microenvironment is mediated by Rab27-regulated vascular wall integrity Science Advances 2025 11 21 eadr6940 Search in Google Scholar

Singh K, Hotchkiss KM, Patel KK, Wilkinson DS, Mohan AA, Cook SL, Sampson JH, et al. Enhancing T cell chemotaxis and infiltration in glioblastoma. Cancers (Basel). 2021;13: 5367. SinghK HotchkissKM PatelKK WilkinsonDS MohanAA CookSL SampsonJH Enhancing T cell chemotaxis and infiltration in glioblastoma Cancers (Basel) 2021 13 5367 Search in Google Scholar

Ravi VM, Neidert N, Will P, Joseph K, Maier JP, Kückelhaus J, Vollmer L, Goeldner JM, Behringer SP, Scherer F, et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat Commun. 2022;13: 925. RaviVM NeidertN WillP JosephK MaierJP KückelhausJ VollmerL GoeldnerJM BehringerSP SchererF T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10 Nat Commun 2022 13 925 Search in Google Scholar

Frederico SC, Hancock JC, Brettschneider EES, Ratnam NM, Gilbert MR, Terabe M. Making a cold tumor hot: the role of vaccines in the treatment of glioblastoma. Front Oncol. 2021;11: 672508. FredericoSC HancockJC BrettschneiderEES RatnamNM GilbertMR TerabeM Making a cold tumor hot: the role of vaccines in the treatment of glioblastoma Front Oncol 2021 11 672508 Search in Google Scholar

Tang L, Zhang M, Liu C. Advances in nanotechnology-based immunotherapy for glioblastoma. Front Immunol. 2022;13: 882257. TangL ZhangM LiuC Advances in nanotechnology-based immunotherapy for glioblastoma Front Immunol 2022 13 882257 Search in Google Scholar

Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15: 422–42. LimM XiaY BettegowdaC WellerM Current state of immunotherapy for glioblastoma Nat Rev Clin Oncol 2018 15 422 42 Search in Google Scholar

Pearson JRD, Cuzzubbo S, McArthur S, Durrant LG, Adhikaree J, Tinsley CJ, Pockley AG, McArdle SEB. Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Front Immunol. 2020;11: 582106. PearsonJRD CuzzubboS McArthurS DurrantLG AdhikareeJ TinsleyCJ PockleyAG McArdleSEB Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment Front Immunol 2020 11 582106 Search in Google Scholar

Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565: 234–39. KeskinDB AnandappaAJ SunJ TiroshI MathewsonND LiS OliveiraG Giobbie-HurderA FeltK GjiniE Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial Nature 2019 565 234 39 Search in Google Scholar

Chiocca EA, Nassiri F, Wang J, Peruzzi P, Zadeh G. Viral and other therapies for recurrent glioblastoma: is a 24-month durable response unusual? Neuro Oncol. 2019;21: 14–25. ChioccaEA NassiriF WangJ PeruzziP ZadehG Viral and other therapies for recurrent glioblastoma: is a 24-month durable response unusual? Neuro Oncol 2019 21 14 25 Search in Google Scholar

Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, Alitalo K, Thomas JL, Iwasaki A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumors. Nature. 2020;577: 689–94. SongE MaoT DongH BoisserandLSB AntilaS BosenbergM AlitaloK ThomasJL IwasakiA VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumors Nature 2020 577 689 94 Search in Google Scholar

Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, Downey KM, Yu W, Carrera DA, Celli A, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13: eabe7378. ChoeJH WatchmakerPB SimicMS GilbertRD LiAW KrasnowNA DowneyKM YuW CarreraDA CelliA SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma Sci Transl Med 2021 13 eabe7378 Search in Google Scholar

Choi BD, Gerstner ER, Frigault MJ, Leick MB, Mount CW, Balaj L, Nikiforow S, Carter BS, Curry WT, Gallagher K, et al. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N Engl J Med. 2024;390: 1290–98. ChoiBD GerstnerER FrigaultMJ LeickMB MountCW BalajL NikiforowS CarterBS CurryWT GallagherK Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma N Engl J Med 2024 390 1290 98 Search in Google Scholar

Bagley SJ, Logun M, Fraietta JA, Wang X, Desai AS, Bagley LJ, Nabavizadeh A, Jarocha D, Martins R, Maloney E, et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results. Nat Med. 2024;30: 1320–29. BagleySJ LogunM FraiettaJA WangX DesaiAS BagleyLJ NabavizadehA JarochaD MartinsR MaloneyE Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results Nat Med 2024 30 1320 29 Search in Google Scholar

Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, Tonn T, Steinbach JP, Wels WS. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy. Front Immunol. 2019;10: 2683. BurgerMC ZhangC HarterPN RomanskiA StrassheimerF SenftC TonnT SteinbachJP WelsWS CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy Front Immunol 2019 10 2683 Search in Google Scholar

Dudley AC, Shih SC, Cliffe AR, Hida K, Klagsbrun M. Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors. Blood. 2010;116: 3367–71. DudleyAC ShihSC CliffeAR HidaK KlagsbrunM Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors Blood 2010 116 3367 71 Search in Google Scholar

Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, Güç E, Kapourani CA, Byron A, Ferguson KM, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184: 2454–70.e26. GangosoE SouthgateB BradleyL RusS Galvez-CancinoF McGivernN GüçE KapouraniCA ByronA FergusonKM Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion Cell 2021 184 2454 70.e26 Search in Google Scholar

Hosseinalizadeh H, Habibi Roudkenar M, Mohammadi Roushandeh A, Kuwahara Y, Tomita K, Sato T. Natural killer cell immunotherapy in glioblastoma. Discov Oncol. 2022;13: 113. HosseinalizadehH Habibi RoudkenarM Mohammadi RoushandehA KuwaharaY TomitaK SatoT Natural killer cell immunotherapy in glioblastoma Discov Oncol 2022 13 113 Search in Google Scholar

Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov. 2022;21: 559–77. MaskalenkoNA ZhigarevD CampbellKS Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders Nat Rev Drug Discov 2022 21 559 77 Search in Google Scholar

Correia AL, Guimaraes JC, Auf der Maur P, De Silva D, Trefny MP, Okamoto R, Bruno S, Schmidt A, Mertz K, Volkmann K, et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature. 2021;594: 566–71. CorreiaAL GuimaraesJC Auf der MaurP De SilvaD TrefnyMP OkamotoR BrunoS SchmidtA MertzK VolkmannK Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy Nature 2021 594 566 71 Search in Google Scholar

Huntington ND, Cursons J, Rautela J. The cancer–natural killer cell immunity cycle. Nat Rev Cancer. 2020;20: 437–54. HuntingtonND CursonsJ RautelaJ The cancer–natural killer cell immunity cycle Nat Rev Cancer 2020 20 437 54 Search in Google Scholar

Shanley M, Daher M, Dou J, Li S, Basar R, Rafei H, Dede M, Gumin J, Pantaleón García J, Nunez Cortes AK, et al. Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD. Cancer Cell. 2024;42: 1450–61.e11. ShanleyM DaherM DouJ LiS BasarR RafeiH DedeM GuminJ Pantaleón GarcíaJ Nunez CortesAK Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD Cancer Cell 2024 42 1450 61.e11 Search in Google Scholar

Jong AY, Wu CH, Li J, Sun J, Fabbri M, Wayne AS, Seeger RC. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017;6: 1294368. JongAY WuCH LiJ SunJ FabbriM WayneAS SeegerRC Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells J Extracell Vesicles 2017 6 1294368 Search in Google Scholar

Li X, Zhao L, Li W, Gao P, Zhang N. HER2-targeting CAR-T cells show highly efficient anti-tumor activity against glioblastoma both in vitro and in vivo. Genes Immun. 2024;25: 201–8. LiX ZhaoL LiW GaoP ZhangN HER2-targeting CAR-T cells show highly efficient anti-tumor activity against glioblastoma both in vitro and in vivo Genes Immun 2024 25 201 8 Search in Google Scholar

van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19: 1–12. van TellingenO Yetkin-ArikB de GooijerMC WesselingP WurdingerT de VriesHE Overcoming the blood-brain tumor barrier for effective glioblastoma treatment Drug Resist Updat 2015 19 1 12 Search in Google Scholar

Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumor barrier in brain tumors and metastases. Nat Rev Cancer. 2020;20: 26–41. ArvanitisCD FerraroGB JainRK The blood-brain barrier and blood-tumor barrier in brain tumors and metastases Nat Rev Cancer 2020 20 26 41 Search in Google Scholar

Noorani I, de la Rosa J. Breaking barriers for glioblastoma with a path to enhanced drug delivery. Nat Commun. 2023;14: 5909. NooraniI de la RosaJ Breaking barriers for glioblastoma with a path to enhanced drug delivery Nat Commun 2023 14 5909 Search in Google Scholar

Rui Y, Green JJ. Overcoming delivery barriers in immunotherapy for glioblastoma. Drug Deliv Transl Res. 2021;11: 2302–11. RuiY GreenJJ Overcoming delivery barriers in immunotherapy for glioblastoma Drug Deliv Transl Res 2021 11 2302 11 Search in Google Scholar

Huang J, Cao Y, Chang S. An inhibitor of claudin-5 interactions, M01, alleviates neuroinflammation and vasogenic edema after blood-spinal cord barrier dysfunction. Neuroreport. 2023;34: 512–20. HuangJ CaoY ChangS An inhibitor of claudin-5 interactions, M01, alleviates neuroinflammation and vasogenic edema after blood-spinal cord barrier dysfunction Neuroreport 2023 34 512 20 Search in Google Scholar

Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29: 341–45. Alvarez-ErvitiL SeowY YinH BettsC LakhalS WoodMJ Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes Nat Biotechnol 2011 29 341 45 Search in Google Scholar

Daniel P, Meehan B, Sabri S, Jamali F, Sarkaria JN, Choi D, Garnier D, Kitange G, Glennon KI, Paccard A, et al. Detection of temozolomide-induced hypermutation and response to PD-1 checkpoint inhibitor in recurrent glioblastoma. Neurooncol Adv. 2022;4: vdac076. DanielP MeehanB SabriS JamaliF SarkariaJN ChoiD GarnierD KitangeG GlennonKI PaccardA Detection of temozolomide-induced hypermutation and response to PD-1 checkpoint inhibitor in recurrent glioblastoma Neurooncol Adv 2022 4 vdac076 Search in Google Scholar

Meehan B, Adnani L, Zhu X, Tawil N, Garnier D, Nakano I, Huang S, Rak J. Therapeutic window enabling eradication of residual glioma stem cells by intracranial NK cell and extracellular vesicle-mediated therapy following temozolomide-induced tumor depopulation. Neuro Oncol. 2023;25: v155–55. MeehanB AdnaniL ZhuX TawilN GarnierD NakanoI HuangS RakJ Therapeutic window enabling eradication of residual glioma stem cells by intracranial NK cell and extracellular vesicle-mediated therapy following temozolomide-induced tumor depopulation Neuro Oncol 2023 25 v155 55 Search in Google Scholar

Treps L, Perret R, Edmond S, Ricard D, Gavard J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles. 2017;6: 1359479. TrepsL PerretR EdmondS RicardD GavardJ Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles J Extracell Vesicles 2017 6 1359479 Search in Google Scholar

Tolmachova T, Abrink M, Futter CE, Authi KS, Seabra MC. Rab27b regulates number and secretion of platelet dense granules. Proc Natl Acad Sci U S A. 2007;104: 5872–77. TolmachovaT AbrinkM FutterCE AuthiKS SeabraMC Rab27b regulates number and secretion of platelet dense granules Proc Natl Acad Sci U S A 2007 104 5872 77 Search in Google Scholar

van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19: 213–28. van NielG D'AngeloG RaposoG Shedding light on the cell biology of extracellular vesicles Nat Rev Mol Cell Biol 2018 19 213 28 Search in Google Scholar

Boucher JM, Clark RP, Chong DC, Citrin KM, Wylie LA, Bautch VL. Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis. Nat Commun. 2017;8: 15699. BoucherJM ClarkRP ChongDC CitrinKM WylieLA BautchVL Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis Nat Commun 2017 8 15699 Search in Google Scholar

Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, Roussel MF, Finkelstein D, Goumnerova L, Perreault S, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell. 2016;29: 508–22. PhoenixTN PatmoreDM BoopS BoulosN JacusMO PatelYT RousselMF FinkelsteinD GoumnerovaL PerreaultS Medulloblastoma genotype dictates blood brain barrier phenotype Cancer Cell 2016 29 508 22 Search in Google Scholar

Wei X, Meel MH, Breur M, Bugiani M, Hulleman E, Phoenix TN. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun. 2021;9: 142. WeiX MeelMH BreurM BugianiM HullemanE PhoenixTN Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas Acta Neuropathol Commun 2021 9 142 Search in Google Scholar

Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H, Hayes JL, Lee K, Balaj L, Passaro C, et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv. 2018;4: eaar2766. RicklefsFL AlayoQ KrenzlinH MahmoudAB SperanzaMC NakashimaH HayesJL LeeK BalajL PassaroC Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles Sci Adv 2018 4 eaar2766 Search in Google Scholar

Język:
Angielski