This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Jamshidi P, Brat DJ. The 2021 WHO classification of central nervous system tumors: what neurologists need to know. Curr Opin Neurol. 2022;35: 764–71.JamshidiPBratDJThe 2021 WHO classification of central nervous system tumors: what neurologists need to knowCurr Opin Neurol20223576471Search in Google Scholar
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, et al. DNA methylation-based classification of central nervous system tumors. Nature. 2018;555: 469–74.CapperDJonesDTWSillMHovestadtVSchrimpfDSturmDKoelscheCSahmFChavezLReussDEDNA methylation-based classification of central nervous system tumorsNature201855546974Search in Google Scholar
Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas – implications for classification and therapy. Nat Rev Clin Oncol. 2017;14: 434–52.ReifenbergerGWirschingHGKnobbe-ThomsenCBWellerMAdvances in the molecular genetics of gliomas – implications for classification and therapyNat Rev Clin Oncol20171443452Search in Google Scholar
Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22: 1073–113.WenPYWellerMLeeEQAlexanderBMBarnholtz-SloanJSBarthelFPBatchelorTTBindraRSChangSMChioccaEAGlioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directionsNeuro Oncol2020221073113Search in Google Scholar
Wyss J, Frank NA, Soleman J, Scheinemann K. Novel pharmacological treatment options in pediatric glioblastoma – a systematic review. Cancers (Basel). 2022;14.WyssJFrankNASolemanJScheinemannKNovel pharmacological treatment options in pediatric glioblastoma – a systematic reviewCancers (Basel)202214Search in Google Scholar
Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, Abate F, Liu Z, Elliott O, Shin YJ, et al. Clonal evolution of glioblastoma under therapy. Nat Genet. 2016;48: 768–76.WangJCazzatoELadewigEFrattiniVRosenbloomDIZairisSAbateFLiuZElliottOShinYJClonal evolution of glioblastoma under therapyNat Genet20164876876Search in Google Scholar
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9: 157–73.PhillipsHSKharbandaSChenRForrestWFSorianoRHWuTDMisraANigroJMColmanHSoroceanuLMolecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesisCancer Cell2006915773Search in Google Scholar
Garnier D, Meehan B, Kislinger T, Daniel P, Sinha A, Abdulkarim B, Nakano I, Rak J, et al. Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro Oncol. 2018;20: 236–48.GarnierDMeehanBKislingerTDanielPSinhaAAbdulkarimBNakanoIRakJDivergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitizationNeuro Oncol20182023648Search in Google Scholar
Weiss T, Schneider H, Silginer M, Steinle A, Pruschy M, Polić B, Weller M, Roth P. NKG2D-dependent antitumor effects of chemotherapy and radiotherapy against glioblastoma. Clin Cancer Res. 2018;24: 882–95.WeissTSchneiderHSilginerMSteinleAPruschyMPolićBWellerMRothPNKG2D-dependent antitumor effects of chemotherapy and radiotherapy against glioblastomaClin Cancer Res20182488295Search in Google Scholar
Meehan B, Adnani L, Zhu X, Tawil N, Garnier D, Nakano I, Huang S, Rak J. Curative timed NK cell-based immunochemotherapy aborts brain tumor recurrence driven by mesenchymal glioma stem cells. Acta Neuropathol Commun. 2025;13: 64.MeehanBAdnaniLZhuXTawilNGarnierDNakanoIHuangSRakJCurative timed NK cell-based immunochemotherapy aborts brain tumor recurrence driven by mesenchymal glioma stem cellsActa Neuropathol Commun20251364Search in Google Scholar
Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, Aghi MK, Butowski NA. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neurooncol Adv. 2021;3: vdab100.HaddadAFYoungJSAmaraDBergerMSRaleighDRAghiMKButowskiNAMouse models of glioblastoma for the evaluation of novel therapeutic strategiesNeurooncol Adv20213vdab100Search in Google Scholar
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol. 2024;13: 40.ShenYThngDKHWongALATohTBMechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive reviewExp Hematol Oncol20241340Search in Google Scholar
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol. 2024;21: 1354–75.LiuYZhouFAliHLathiaJDChenPImmunotherapy for glioblastoma: current state, challenges, and future perspectivesCell Mol Immunol202421135475Search in Google Scholar
Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164: 550–63.CeccarelliMBarthelFPMaltaTMSabedotTSSalamaSRMurrayBAMorozovaONewtonYRadenbaughAPagnottaSMMolecular profiling reveals biologically discrete subsets and pathways of progression in diffuse gliomaCell201616455063Search in Google Scholar
Chittiboina P, Connor DE Jr, Caldito G, Quillin JW, Wilson JD, Nanda A. Occult tumors presenting with negative imaging: analysis of the literature. J Neurosurg. 2012;116: 1195–203.ChittiboinaPConnorDEJrCalditoGQuillinJWWilsonJDNandaAOccult tumors presenting with negative imaging: analysis of the literatureJ Neurosurg20121161195203Search in Google Scholar
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344: 1396–401.PatelAPTiroshITrombettaJJShalekAKGillespieSMWakimotoHCahillDPNahedBVCurryWTMartuzaRLSingle-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastomaScience20143441396401Search in Google Scholar
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB, et al. Identification of human brain tumor initiating cells. Nature. 2004;432: 396–401.SinghSKHawkinsCClarkeIDSquireJABayaniJHideTHenkelmanRMCusimanoMDDirksPBIdentification of human brain tumor initiating cellsNature2004432396401Search in Google Scholar
Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A. 2013;110: 8644–49.MaoPJoshiKLiJKimSHLiPSantana-SantosLLuthraSChandranURBenosPVSmithLMesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3Proc Natl Acad Sci U S A2013110864449Search in Google Scholar
Bastola S, Pavlyukov MS, Yamashita D, Ghosh S, Cho H, Kagaya N, Zhang Z, Minata M, Lee Y, Sadahiro H, et al. Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nat Commun. 2020;11: 4660.BastolaSPavlyukovMSYamashitaDGhoshSChoHKagayaNZhangZMinataMLeeYSadahiroHGlioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancyNat Commun2020114660Search in Google Scholar
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178: 835–49.e21.NeftelCLaffyJFilbinMGHaraTShoreMERahmeGJRichmanARSilverbushDShawMLHebertCMAn integrative model of cellular states, plasticity, and genetics for glioblastomaCell201917883549.e21Search in Google Scholar
Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, et al. Brain tumor cells interconnect to a functional and resistant network. Nature. 2015;528: 93–98.OsswaldMJungESahmFSoleckiGVenkataramaniVBlaesJWeilSHorstmannHWiestlerBSyedMBrain tumor cells interconnect to a functional and resistant networkNature20155289398Search in Google Scholar
Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakfield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018;14: 482–95.BroekmanMLMaasSLNAbelsERMempelTRKrichevskyAMBreakfieldXOMultidimensional communication in the microenvirons of glioblastomaNat Rev Neurol20181448295Search in Google Scholar
Hausmann D, Hoffmann DC, Venkataramani V, Jung E, Horschitz S, Tetzlaff SK, Jabali A, Hai L, Kessler T, Azoŕin DD, et al. Autonomous rhythmic activity in glioma networks drives brain tumor growth. Nature. 2023;613: 179–86.HausmannDHoffmannDCVenkataramaniVJungEHorschitzSTetzlaffSKJabaliAHaiLKesslerTAzoŕinDDAutonomous rhythmic activity in glioma networks drives brain tumor growthNature202361317986Search in Google Scholar
Ricklefs F, Mineo M, Rooj AK, Nakano I, Charest A, Weissleder R, Breakefield XO, Chiocca EA, Godlewski J, Bronisz A. Extracellular vesicles from high-grade glioma exchange diverse pro-oncogenic signals that maintain intratumoral heterogeneity. Cancer Res. 2016;76: 2876–81.RicklefsFMineoMRoojAKNakanoICharestAWeisslederRBreakefieldXOChioccaEAGodlewskiJBroniszAExtracellular vesicles from high-grade glioma exchange diverse pro-oncogenic signals that maintain intratumoral heterogeneityCancer Res201676287681Search in Google Scholar
Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumor cells. Nat Cell Biol. 2008;10: 619–24.Al-NedawiKMeehanBMicallefJLhotakVMayLGuhaARakJIntercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumor cellsNat Cell Biol20081061924Search in Google Scholar
Montermini L, Meehan B, Garnier D, Lee WJ, Lee TH, Guha A, Al-Nedawi K, Rak J. Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content. J Biol Chem. 2015;290: 24534–46.MonterminiLMeehanBGarnierDLeeWJLeeTHGuhaAAl-NedawiKRakJInhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA contentJ Biol Chem20152902453446Search in Google Scholar
Spinelli C, Adnani L, Meehan B, Montermini L, Huang S, Kim M, Nishimura T, Croul SE, Nakano I, Riazalhosseini Y, et al. Mesenchymal glioma stem cells trigger vasectasia-distinct neovascularization process stimulated by extracellular vesicles carrying EGFR. Nat Commun. 2024;15: 2865.SpinelliCAdnaniLMeehanBMonterminiLHuangSKimMNishimuraTCroulSENakanoIRiazalhosseiniYMesenchymal glioma stem cells trigger vasectasia-distinct neovascularization process stimulated by extracellular vesicles carrying EGFRNat Commun2024152865Search in Google Scholar
Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10: 1470–76.SkogJWürdingerTvan RijnSMeijerDHGaincheLSena-EstevesMCurryWTJrCarterBSKrichevskyAMBreakefieldXOGlioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkersNat Cell Biol200810147076Search in Google Scholar
Figueroa JM, Skog J, Akers J, Li H, Komotar R, Jensen R, Ringel F, Yang I, Kalkanis S, Thompson R. Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients. Neuro Oncol. 2017;19: 1494–502.FigueroaJMSkogJAkersJLiHKomotarRJensenRRingelFYangIKalkanisSThompsonRDetection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patientsNeuro Oncol2017191494502Search in Google Scholar
Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D'Asti E, Rak J. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol. 2017;67: 11–22.ChoiDLeeTHSpinelliCChennakrishnaiahSD'AstiERakJExtracellular vesicle communication pathways as regulatory targets of oncogenic transformationSemin Cell Dev Biol2017671122Search in Google Scholar
Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics. 2018;17: 1948–64.ChoiDMonterminiLKimDKMeehanBRothFPRakJThe impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cellsMol Cell Proteomics201817194864Search in Google Scholar
Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, Mörgelin M, Bourseau-Guilmain E, Bengzon J, Belting M. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110: 7312–17.KucharzewskaPChristiansonHCWelchJESvenssonKJFredlundERingnérMMörgelinMBourseau-GuilmainEBengzonJBeltingMExosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor developmentProc Natl Acad Sci U S A2013110731217Search in Google Scholar
Rak J. Extracellular vesicles – biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol. 2013;21.RakJExtracellular vesicles – biomarkers and effectors of the cellular interactome in cancerFront Pharmacol201321Search in Google Scholar
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D. Cancer neuroscience: state of the field, emerging directions. Cell. 2023;186: 1689–707.WinklerFVenkateshHSAmitMBatchelorTDemirIEDeneenBGutmannDHHervey-JumperSKunerTMabbottDCancer neuroscience: state of the field, emerging directionsCell20231861689707Search in Google Scholar
Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31: 326–41.QuailDFJoyceJAThe microenvironmental landscape of brain tumorsCancer Cell20173132641Search in Google Scholar
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023;8: 217.WuDChenQChenXHanFChenZWangYThe blood-brain barrier: structure, regulation, and drug deliverySignal Transduct Target Ther20238217Search in Google Scholar
Zagzag D, Friedlander DR, Margolis B, Grumet M, Semenza GL, Zhong H, Simons JW, Holash J, Wiegand SJ, Yancopoulos GD. Molecular events implicated in brain tumor angiogenesis and invasion. Pediatr Neurosurg. 2000;33: 49–55.ZagzagDFriedlanderDRMargolisBGrumetMSemenzaGLZhongHSimonsJWHolashJWiegandSJYancopoulosGDMolecular events implicated in brain tumor angiogenesis and invasionPediatr Neurosurg2000334955Search in Google Scholar
Cribaro GP, Saavedra-López E, Romarate L, Mitxitorena I, Díaz LR, Casanova PV, Roig-Martínez M, Gallego JM, Perez-Vallés A, Barcia C. Three-dimensional vascular microenvironment landscape in human glioblastoma. Acta Neuropathol Commun. 2021;9: 24.CribaroGPSaavedra-LópezERomarateLMitxitorenaIDíazLRCasanovaPVRoig-MartínezMGallegoJMPerez-VallésABarciaCThree-dimensional vascular microenvironment landscape in human glioblastomaActa Neuropathol Commun2021924Search in Google Scholar
Burdett KB, Unruh D, Drumm M, Steffens A, Lamano J, Judkins J, Schwartz M, Javier R, Amidei C, Lipp ES, et al. Determining venous thromboembolism risk in patients with adult-type diffuse glioma. Blood. 2023;141: 1322–36.BurdettKBUnruhDDrummMSteffensALamanoJJudkinsJSchwartzMJavierRAmideiCLippESDetermining venous thromboembolism risk in patients with adult-type diffuse gliomaBlood2023141132236Search in Google Scholar
Brat DJ, Van Meir EG. Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest. 2004;84: 397–405.BratDJVan MeirEGVaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastomaLab Invest200484397405Search in Google Scholar
Tehrani M, Friedman TM, Olson JJ, Brat DJ. Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol. 2008;18: 164–71.TehraniMFriedmanTMOlsonJJBratDJIntravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastomaBrain Pathol20081816471Search in Google Scholar
Tawil N, Bassawon R, Meehan B, Nehme A, Montermini L, Gayden T, De Jay N, Spinelli C, Chennakrishnaiah S, Choi D, et al. Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Adv. 2021;5: 1682–94.TawilNBassawonRMeehanBNehmeAMonterminiLGaydenTDe JayNSpinelliCChennakrishnaiahSChoiDGlioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesiclesBlood Adv20215168294Search in Google Scholar
Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284: 1994–98.HolashJMaisonpierrePCComptonDBolandPAlexanderCRZagzagDYancopoulosGDWiegandSJVessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGFScience1999284199498Search in Google Scholar
Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumors. Nat Rev Neurosci. 2007;8: 610–22.JainRKdi TomasoEDudaDGLoefflerJSSorensenAGBatchelorTTAngiogenesis in brain tumorsNat Rev Neurosci2007861022Search in Google Scholar
Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res. 2007;13: 1253–59.VredenburghJJDesjardinsAHerndonJE2ndDowellJMReardonDAQuinnJARichJNSathornsumeteeSGururanganSWagnerMPhase II trial of bevacizumab and irinotecan in recurrent malignant gliomaClin Cancer Res200713125359Search in Google Scholar
Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem. 2001;49: 419–32.DvorakAMFengDThe vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelleJ Histochem Cytochem20014941932Search in Google Scholar
Rivera LB, Bergers G. Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol. 2015;36: 240–49.RiveraLBBergersGIntertwined regulation of angiogenesis and immunity by myeloid cellsTrends Immunol20153624049Search in Google Scholar
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20: 184–91.SarkariaJNHuLSParneyIFPafundiDHBrinkmannDHLaackNNGianniniCBurnsTCKizilbashSHLaramyJKIs the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical dataNeuro Oncol20182018491Search in Google Scholar
Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, McLendon RE, Herndon JE 2nd, Jones LW, Kirkpatrick JP, et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw. 2011;9: 414–27.ReardonDATurnerSPetersKBDesjardinsAGururanganSSampsonJHMcLendonREHerndonJE2ndJonesLWKirkpatrickJPA review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastomaJ Natl Compr Canc Netw2011941427Search in Google Scholar
Blumenthal DT, Kanner AA, Aizenstein O, Cagnano E, Greenberg A, Hershkovitz D, Ram Z, Bokstein F. Surgery for recurrent high-grade glioma after treatment with bevacizumab. World Neurosurg. 2018;110: e727–37.BlumenthalDTKannerAAAizensteinOCagnanoEGreenbergAHershkovitzDRamZBoksteinFSurgery for recurrent high-grade glioma after treatment with bevacizumabWorld Neurosurg2018110e72737Search in Google Scholar
Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16: 469–93.KuczynskiEAVermeulenPBPezzellaFKerbelRSReynoldsARVessel co-option in cancerNat Rev Clin Oncol20191646993Search in Google Scholar
Uroz M, Stoddard AE, Sutherland BP, Courbot O, Oria R, Li L, Ravasio CR, Ngo MT, Yang J, Tefft JB, et al. Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option. Nat Cell Biol. 2024;26: 2144–53.UrozMStoddardAESutherlandBPCourbotOOriaRLiLRavasioCRNgoMTYangJTefftJBDifferential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-optionNat Cell Biol202426214453Search in Google Scholar
Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, et al. Tumor vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468: 824–28.Ricci-VitianiLPalliniRBiffoniMTodaroMInverniciGCenciTMairaGParatiEAStassiGLaroccaLMTumor vascularization via endothelial differentiation of glioblastoma stem-like cellsNature201046882428Search in Google Scholar
Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153: 139–52.ChengLHuangZZhouWWuQDonnolaSLiuJKFangXSloanAEMaoYLathiaJDGlioblastoma stem cells generate vascular pericytes to support vessel function and tumor growthCell201315313952Search in Google Scholar
Rak J, Emmenegger U. In: Harrington LA, Tannock IF, Hill RP, Cescon DW, editors. The Basic Science of Oncology. 6th ed. New York: McGraw-Hill Education; 2021.RakJEmmeneggerUIn:HarringtonLATannockIFHillRPCesconDWeditors.The Basic Science of Oncology6th ed.New YorkMcGraw-Hill Education2021Search in Google Scholar
Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;554: 475–80.VanlandewijckMHeLMäeMAAndraeJAndoKDel GaudioFNaharKLebouvierTLaviñaBGouveiaLA molecular atlas of cell types and zonation in the brain vasculatureNature201855447580Search in Google Scholar
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, et al. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature. 2024;632: 603–13.WälchliTGhobrialMSchwabMTakadaSZhongHSuntharalinghamSVetiskaSGonzalezDRWuRRehrauerHSingle-cell atlas of the human brain vasculature across development, adulthood and diseaseNature202463260313Search in Google Scholar
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11: 69–82.CalabreseCPoppletonHKocakMHoggTLFullerCHamnerBOhEYGaberMWFinklesteinDAllenMKocakMA perivascular niche for brain tumor stem cellsCancer Cell2007116982Search in Google Scholar
Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, Yang K, Morton AR, Zhou W, Zhu Z, et al. Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell. 2018;22: 514–28.e5.WangXPragerBCWuQKimLJYGimpleRCShiYYangKMortonARZhouWZhuZReciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progressionCell Stem Cell20182251428.e5Search in Google Scholar
Jung E, Osswald M, Ratliff M, Dogan H, Xie R, Weil S, Hoffmann DC, Kurz FT, Kessler T, Heiland S, et al. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat Commun. 2021;12: 1014.JungEOsswaldMRatliffMDoganHXieRWeilSHoffmannDCKurzFTKesslerTHeilandSTumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in gliomaNat Commun2021121014Search in Google Scholar
Rak J. Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Med Hypotheses. 2006;66: 601–4.RakJIs cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis?Med Hypotheses2006666014Search in Google Scholar
Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529: 316–25.RafiiSButlerJMDingBSAngiocrine functions of organ-specific endothelial cellsNature201652931625Search in Google Scholar
Adnani L, Kassouf J, Meehan B, Spinelli C, Tawil N, Nakano I, Rak J. Angiocrine extracellular vesicles impose mesenchymal reprogramming upon proneural glioma stem cells. Nat Commun. 2022;13: 5494.AdnaniLKassoufJMeehanBSpinelliCTawilNNakanoIRakJAngiocrine extracellular vesicles impose mesenchymal reprogramming upon proneural glioma stem cellsNat Commun2022135494Search in Google Scholar
Huinen ZR, Huijbers EJM, van Beijnum JR, Nowak-Sliwinska P, Griffioen AW. Anti-angiogenic agents - overcoming tumor endothelial cell anergy and improving immunotherapy outcomes. Nat Rev Clin Oncol. 2021;18: 527–40.HuinenZRHuijbersEJMvan BeijnumJRNowak-SliwinskaPGriffioenAWAnti-angiogenic agents - overcoming tumor endothelial cell anergy and improving immunotherapy outcomesNat Rev Clin Oncol20211852740Search in Google Scholar
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20: 651–68.WaldmanADFritzJMLenardoMJA guide to cancer immunotherapy: from T cell basic science to clinical practiceNat Rev Immunol20202065168Search in Google Scholar
Kroemer G, Zitvogel L. Immune checkpoint inhibitors. J Exp Med. 2021;218: e20201979.KroemerGZitvogelLImmune checkpoint inhibitorsJ Exp Med2021218e20201979Search in Google Scholar
Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619: 707–15.BakerDJAranyZBaurJAEpsteinJAJuneCHCAR T therapy beyond cancer: the evolution of a living drugNature202361970715Search in Google Scholar
Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, Martínez-Pérez A, Rodrigo JP, García-Pedrero JM, Gonzalez S. Chemo-immunotherapy: a new trend in cancer treatment. Cancers (Basel). 2023;15: 2912.Sordo-BahamondeCLorenzo-HerreroSGonzalez-RodriguezAPMartínez-PérezARodrigoJPGarcía-PedreroJMGonzalezSChemo-immunotherapy: a new trend in cancer treatmentCancers (Basel)2023152912Search in Google Scholar
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, et al. Abscopal effect and drug-induced xenogenization: a strategic alliance in cancer treatment? Int J Mol Sci. 2021;22: 10672.FranzeseOTorinoFGiannettiECioccoloniGAquinoAFaraoniIFuggettaMPDe VecchisLGiulianiAKainaBAbscopal effect and drug-induced xenogenization: a strategic alliance in cancer treatment?Int J Mol Sci202122Search in Google Scholar
Andersen BM, Faust Akl C, Wheeler MA, Chiocca EA, Reardon DA, Quintana FJ. Glial and myeloid heterogeneity in the brain tumor microenvironment. Nat Rev Cancer. 2021;21: 786–802.AndersenBMFaust AklCWheelerMAChioccaEAReardonDAQuintanaFJGlial and myeloid heterogeneity in the brain tumor microenvironmentNat Rev Cancer202121786802Search in Google Scholar
Ng AT, Steve T, Jamouss KT, Arham A, Kawtharani S, Assi HI. The challenges and clinical landscape of glioblastoma immunotherapy. CNS Oncol. 2024;13: 2415878.NgATSteveTJamoussKTArhamAKawtharaniSAssiHIThe challenges and clinical landscape of glioblastoma immunotherapyCNS Oncol2024132415878Search in Google Scholar
Eckert T, Zobaer MS, Boulos J, Alexander-Bryant A, Baker TG, Rivers C, Das A, Vandergrift WA, Martinez J, Zukas A, et al. Immune resistance in glioblastoma: understanding the barriers to ICI and CAR-T cell therapy. Cancers (Basel). 2025;17: 462.EckertTZobaerMSBoulosJAlexander-BryantABakerTGRiversCDasAVandergriftWAMartinezJZukasAImmune resistance in glioblastoma: understanding the barriers to ICI and CAR-T cell therapyCancers (Basel)202517462Search in Google Scholar
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. eBioMedicine. 2024;100: 104963.XiongZRaphaelIOlinMOkadaHLiXKohanbashGGlioblastoma vaccines: past, present, and opportunitieseBioMedicine2024100104963Search in Google Scholar
Gatto L, Di Nunno V, Tosoni A, Bartolini S, Ranieri L, Franceschi E. DCVax-L vaccination in patients with glioblastoma: real promise or negative trial? The debate is open. Cancers (Basel). 2023;15: 3251.GattoLDi NunnoVTosoniABartoliniSRanieriLFranceschiEDCVax-L vaccination in patients with glioblastoma: real promise or negative trial? The debate is openCancers (Basel)2023153251Search in Google Scholar
Monje M, Mahdi J, Majzner R, Yeom KW, Schultz LM, Richards RM, Barsan V, Song KW, Kamens J, Baggott C, et al. Intravenous and intracranial GD2-CAR T cells for H3K27M(+) diffuse midline gliomas. Nature. 2025;637: 708–15.MonjeMMahdiJMajznerRYeomKWSchultzLMRichardsRMBarsanVSongKWKamensJBaggottCIntravenous and intracranial GD2-CAR T cells for H3K27M(+) diffuse midline gliomasNature202563770815Search in Google Scholar
Schonfeld E, Choi J, Tran A, Kim LH, Lim M. The landscape of immune checkpoint inhibitor clinical trials in glioblastoma: a systematic review. Neurooncol Adv. 2024;6: vdae174.SchonfeldEChoiJTranAKimLHLimMThe landscape of immune checkpoint inhibitor clinical trials in glioblastoma: a systematic reviewNeurooncol Adv20246vdae174Search in Google Scholar
Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32: 42–56.e6.WangQHuBHuXKimHSquatritoMScarpaceLdeCarvalhoACLyuSLiPLiYTumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironmentCancer Cell2017324256.e6Search in Google Scholar
Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, Woroniecka K, Elsamadicy AA, Dechant CA, Kemeny HR, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018;24: 1459–68.ChongsathidkietPJacksonCKoyamaSLoebelFCuiXFarberSHWoronieckaKElsamadicyAADechantCAKemenyHRSequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumorsNat Med201824145968Search in Google Scholar
Sabbagh A, Beccaria K, Ling X, Marisetty A, Ott M, Caruso H, Barton E, Kong LY, Fang D, Latha K, et al. Opening of the blood-brain barrier using low-intensity pulsed ultrasound enhances responses to immunotherapy in preclinical glioma models. Clin Cancer Res. 2021;27: 4325–37.SabbaghABeccariaKLingXMarisettyAOttMCarusoHBartonEKongLYFangDLathaKOpening of the blood-brain barrier using low-intensity pulsed ultrasound enhances responses to immunotherapy in preclinical glioma modelsClin Cancer Res202127432537Search in Google Scholar
Adnani, L., Meehan, B., Kim, M., Choi, D., Rudd, C. E., Riazalhosseini, Y., & Rak, J. Immune cell infiltration into brain tumor microenvironment is mediated by Rab27-regulated vascular wall integrity. Science Advances 2025;11, 21, eadr6940.AdnaniL.MeehanB.KimM.ChoiD.RuddC. E.RiazalhosseiniY.RakJ.Immune cell infiltration into brain tumor microenvironment is mediated by Rab27-regulated vascular wall integrityScience Advances20251121eadr6940Search in Google Scholar
Singh K, Hotchkiss KM, Patel KK, Wilkinson DS, Mohan AA, Cook SL, Sampson JH, et al. Enhancing T cell chemotaxis and infiltration in glioblastoma. Cancers (Basel). 2021;13: 5367.SinghKHotchkissKMPatelKKWilkinsonDSMohanAACookSLSampsonJHEnhancing T cell chemotaxis and infiltration in glioblastomaCancers (Basel)2021135367Search in Google Scholar
Ravi VM, Neidert N, Will P, Joseph K, Maier JP, Kückelhaus J, Vollmer L, Goeldner JM, Behringer SP, Scherer F, et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat Commun. 2022;13: 925.RaviVMNeidertNWillPJosephKMaierJPKückelhausJVollmerLGoeldnerJMBehringerSPSchererFT-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10Nat Commun202213925Search in Google Scholar
Frederico SC, Hancock JC, Brettschneider EES, Ratnam NM, Gilbert MR, Terabe M. Making a cold tumor hot: the role of vaccines in the treatment of glioblastoma. Front Oncol. 2021;11: 672508.FredericoSCHancockJCBrettschneiderEESRatnamNMGilbertMRTerabeMMaking a cold tumor hot: the role of vaccines in the treatment of glioblastomaFront Oncol202111672508Search in Google Scholar
Tang L, Zhang M, Liu C. Advances in nanotechnology-based immunotherapy for glioblastoma. Front Immunol. 2022;13: 882257.TangLZhangMLiuCAdvances in nanotechnology-based immunotherapy for glioblastomaFront Immunol202213882257Search in Google Scholar
Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15: 422–42.LimMXiaYBettegowdaCWellerMCurrent state of immunotherapy for glioblastomaNat Rev Clin Oncol20181542242Search in Google Scholar
Pearson JRD, Cuzzubbo S, McArthur S, Durrant LG, Adhikaree J, Tinsley CJ, Pockley AG, McArdle SEB. Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Front Immunol. 2020;11: 582106.PearsonJRDCuzzubboSMcArthurSDurrantLGAdhikareeJTinsleyCJPockleyAGMcArdleSEBImmune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatmentFront Immunol202011582106Search in Google Scholar
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565: 234–39.KeskinDBAnandappaAJSunJTiroshIMathewsonNDLiSOliveiraGGiobbie-HurderAFeltKGjiniENeoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trialNature201956523439Search in Google Scholar
Chiocca EA, Nassiri F, Wang J, Peruzzi P, Zadeh G. Viral and other therapies for recurrent glioblastoma: is a 24-month durable response unusual? Neuro Oncol. 2019;21: 14–25.ChioccaEANassiriFWangJPeruzziPZadehGViral and other therapies for recurrent glioblastoma: is a 24-month durable response unusual?Neuro Oncol2019211425Search in Google Scholar
Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, Alitalo K, Thomas JL, Iwasaki A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumors. Nature. 2020;577: 689–94.SongEMaoTDongHBoisserandLSBAntilaSBosenbergMAlitaloKThomasJLIwasakiAVEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumorsNature202057768994Search in Google Scholar
Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, Downey KM, Yu W, Carrera DA, Celli A, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13: eabe7378.ChoeJHWatchmakerPBSimicMSGilbertRDLiAWKrasnowNADowneyKMYuWCarreraDACelliASynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastomaSci Transl Med202113eabe7378Search in Google Scholar
Choi BD, Gerstner ER, Frigault MJ, Leick MB, Mount CW, Balaj L, Nikiforow S, Carter BS, Curry WT, Gallagher K, et al. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N Engl J Med. 2024;390: 1290–98.ChoiBDGerstnerERFrigaultMJLeickMBMountCWBalajLNikiforowSCarterBSCurryWTGallagherKIntraventricular CARv3-TEAM-E T cells in recurrent glioblastomaN Engl J Med2024390129098Search in Google Scholar
Bagley SJ, Logun M, Fraietta JA, Wang X, Desai AS, Bagley LJ, Nabavizadeh A, Jarocha D, Martins R, Maloney E, et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results. Nat Med. 2024;30: 1320–29.BagleySJLogunMFraiettaJAWangXDesaiASBagleyLJNabavizadehAJarochaDMartinsRMaloneyEIntrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim resultsNat Med202430132029Search in Google Scholar
Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, Tonn T, Steinbach JP, Wels WS. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy. Front Immunol. 2019;10: 2683.BurgerMCZhangCHarterPNRomanskiAStrassheimerFSenftCTonnTSteinbachJPWelsWSCAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapyFront Immunol2019102683Search in Google Scholar
Dudley AC, Shih SC, Cliffe AR, Hida K, Klagsbrun M. Bone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors. Blood. 2010;116: 3367–71.DudleyACShihSCCliffeARHidaKKlagsbrunMBone marrow is a reservoir for proangiogenic myelomonocytic cells but not endothelial cells in spontaneous tumorsBlood2010116336771Search in Google Scholar
Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, Güç E, Kapourani CA, Byron A, Ferguson KM, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184: 2454–70.e26.GangosoESouthgateBBradleyLRusSGalvez-CancinoFMcGivernNGüçEKapouraniCAByronAFergusonKMGlioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasionCell2021184245470.e26Search in Google Scholar
Hosseinalizadeh H, Habibi Roudkenar M, Mohammadi Roushandeh A, Kuwahara Y, Tomita K, Sato T. Natural killer cell immunotherapy in glioblastoma. Discov Oncol. 2022;13: 113.HosseinalizadehHHabibi RoudkenarMMohammadi RoushandehAKuwaharaYTomitaKSatoTNatural killer cell immunotherapy in glioblastomaDiscov Oncol202213113Search in Google Scholar
Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov. 2022;21: 559–77.MaskalenkoNAZhigarevDCampbellKSHarnessing natural killer cells for cancer immunotherapy: dispatching the first respondersNat Rev Drug Discov20222155977Search in Google Scholar
Correia AL, Guimaraes JC, Auf der Maur P, De Silva D, Trefny MP, Okamoto R, Bruno S, Schmidt A, Mertz K, Volkmann K, et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature. 2021;594: 566–71.CorreiaALGuimaraesJCAuf der MaurPDe SilvaDTrefnyMPOkamotoRBrunoSSchmidtAMertzKVolkmannKHepatic stellate cells suppress NK cell-sustained breast cancer dormancyNature202159456671Search in Google Scholar
Huntington ND, Cursons J, Rautela J. The cancer–natural killer cell immunity cycle. Nat Rev Cancer. 2020;20: 437–54.HuntingtonNDCursonsJRautelaJThe cancer–natural killer cell immunity cycleNat Rev Cancer20202043754Search in Google Scholar
Shanley M, Daher M, Dou J, Li S, Basar R, Rafei H, Dede M, Gumin J, Pantaleón García J, Nunez Cortes AK, et al. Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD. Cancer Cell. 2024;42: 1450–61.e11.ShanleyMDaherMDouJLiSBasarRRafeiHDedeMGuminJPantaleón GarcíaJNunez CortesAKInterleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPDCancer Cell202442145061.e11Search in Google Scholar
Jong AY, Wu CH, Li J, Sun J, Fabbri M, Wayne AS, Seeger RC. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017;6: 1294368.JongAYWuCHLiJSunJFabbriMWayneASSeegerRCLarge-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cellsJ Extracell Vesicles201761294368Search in Google Scholar
Li X, Zhao L, Li W, Gao P, Zhang N. HER2-targeting CAR-T cells show highly efficient anti-tumor activity against glioblastoma both in vitro and in vivo. Genes Immun. 2024;25: 201–8.LiXZhaoLLiWGaoPZhangNHER2-targeting CAR-T cells show highly efficient anti-tumor activity against glioblastoma both in vitro and in vivoGenes Immun2024252018Search in Google Scholar
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19: 1–12.van TellingenOYetkin-ArikBde GooijerMCWesselingPWurdingerTde VriesHEOvercoming the blood-brain tumor barrier for effective glioblastoma treatmentDrug Resist Updat201519112Search in Google Scholar
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumor barrier in brain tumors and metastases. Nat Rev Cancer. 2020;20: 26–41.ArvanitisCDFerraroGBJainRKThe blood-brain barrier and blood-tumor barrier in brain tumors and metastasesNat Rev Cancer2020202641Search in Google Scholar
Noorani I, de la Rosa J. Breaking barriers for glioblastoma with a path to enhanced drug delivery. Nat Commun. 2023;14: 5909.NooraniIde la RosaJBreaking barriers for glioblastoma with a path to enhanced drug deliveryNat Commun2023145909Search in Google Scholar
Rui Y, Green JJ. Overcoming delivery barriers in immunotherapy for glioblastoma. Drug Deliv Transl Res. 2021;11: 2302–11.RuiYGreenJJOvercoming delivery barriers in immunotherapy for glioblastomaDrug Deliv Transl Res202111230211Search in Google Scholar
Huang J, Cao Y, Chang S. An inhibitor of claudin-5 interactions, M01, alleviates neuroinflammation and vasogenic edema after blood-spinal cord barrier dysfunction. Neuroreport. 2023;34: 512–20.HuangJCaoYChangSAn inhibitor of claudin-5 interactions, M01, alleviates neuroinflammation and vasogenic edema after blood-spinal cord barrier dysfunctionNeuroreport20233451220Search in Google Scholar
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29: 341–45.Alvarez-ErvitiLSeowYYinHBettsCLakhalSWoodMJDelivery of siRNA to the mouse brain by systemic injection of targeted exosomesNat Biotechnol20112934145Search in Google Scholar
Daniel P, Meehan B, Sabri S, Jamali F, Sarkaria JN, Choi D, Garnier D, Kitange G, Glennon KI, Paccard A, et al. Detection of temozolomide-induced hypermutation and response to PD-1 checkpoint inhibitor in recurrent glioblastoma. Neurooncol Adv. 2022;4: vdac076.DanielPMeehanBSabriSJamaliFSarkariaJNChoiDGarnierDKitangeGGlennonKIPaccardADetection of temozolomide-induced hypermutation and response to PD-1 checkpoint inhibitor in recurrent glioblastomaNeurooncol Adv20224vdac076Search in Google Scholar
Meehan B, Adnani L, Zhu X, Tawil N, Garnier D, Nakano I, Huang S, Rak J. Therapeutic window enabling eradication of residual glioma stem cells by intracranial NK cell and extracellular vesicle-mediated therapy following temozolomide-induced tumor depopulation. Neuro Oncol. 2023;25: v155–55.MeehanBAdnaniLZhuXTawilNGarnierDNakanoIHuangSRakJTherapeutic window enabling eradication of residual glioma stem cells by intracranial NK cell and extracellular vesicle-mediated therapy following temozolomide-induced tumor depopulationNeuro Oncol202325v15555Search in Google Scholar
Treps L, Perret R, Edmond S, Ricard D, Gavard J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles. 2017;6: 1359479.TrepsLPerretREdmondSRicardDGavardJGlioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesiclesJ Extracell Vesicles201761359479Search in Google Scholar
Tolmachova T, Abrink M, Futter CE, Authi KS, Seabra MC. Rab27b regulates number and secretion of platelet dense granules. Proc Natl Acad Sci U S A. 2007;104: 5872–77.TolmachovaTAbrinkMFutterCEAuthiKSSeabraMCRab27b regulates number and secretion of platelet dense granulesProc Natl Acad Sci U S A2007104587277Search in Google Scholar
van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19: 213–28.van NielGD'AngeloGRaposoGShedding light on the cell biology of extracellular vesiclesNat Rev Mol Cell Biol20181921328Search in Google Scholar
Boucher JM, Clark RP, Chong DC, Citrin KM, Wylie LA, Bautch VL. Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis. Nat Commun. 2017;8: 15699.BoucherJMClarkRPChongDCCitrinKMWylieLABautchVLDynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesisNat Commun2017815699Search in Google Scholar
Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, Roussel MF, Finkelstein D, Goumnerova L, Perreault S, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell. 2016;29: 508–22.PhoenixTNPatmoreDMBoopSBoulosNJacusMOPatelYTRousselMFFinkelsteinDGoumnerovaLPerreaultSMedulloblastoma genotype dictates blood brain barrier phenotypeCancer Cell20162950822Search in Google Scholar
Wei X, Meel MH, Breur M, Bugiani M, Hulleman E, Phoenix TN. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun. 2021;9: 142.WeiXMeelMHBreurMBugianiMHullemanEPhoenixTNDefining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomasActa Neuropathol Commun20219142Search in Google Scholar
Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H, Hayes JL, Lee K, Balaj L, Passaro C, et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv. 2018;4: eaar2766.RicklefsFLAlayoQKrenzlinHMahmoudABSperanzaMCNakashimaHHayesJLLeeKBalajLPassaroCImmune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesiclesSci Adv20184eaar2766Search in Google Scholar