Otwarty dostęp

Budowa i znaczenie II systemu sekrecji białek w ekologii i patogenezie Legionella pneumophila


Zacytuj

Hayes C.S., Aoki S.K., Low D.A.: Bacterial contact-dependent delivery systems. Annu. Rev. Genet., 2010; 44: 71-90Hayes C.S. Aoki S.K. Low D.A. Bacterial contact-dependent delivery systems Annu. Rev. Genet 2010 44 71 9010.1146/annurev.genet.42.110807.09144921047256Search in Google Scholar

So E.C., Mattheis C., Tate E.W., Frankel G., Schroeder G.N.: Creating a customized intracellular niche: Subversion of host cell signaling by Legionella type IV secretion system effectors. Can. J. Microbiol., 2015; 61: 617-635So E.C. Mattheis C. Tate E.W. Frankel G. Schroeder G.N. Creating a customized intracellular niche: Subversion of host cell signaling by Legionella type IV secretion system effectors Can. J. Microbiol 2015 61 617 63510.1139/cjm-2015-016626059316Search in Google Scholar

Brzostek K., Karwicka E.: Mechanizmy sekrecji bakterii Gramujemnych – system sekrecji II typu, sekrecja w biogenezie pilusów, autotransport. Post. Mikrobiol., 2006; 45: 135-151Brzostek K. Karwicka E. Mechanizmy sekrecji bakterii Gramujemnych – system sekrecji II typu, sekrecja w biogenezie pilusów, autotransport Post. Mikrobiol 2006 45 135 151Search in Google Scholar

Cianciotto N.P.: Type II secretion and Legionella virulence. Curr. Top. Microbiol. Immunol., 2013; 376: 81-102Cianciotto N.P. Type II secretion and Legionella virulence Curr. Top. Microbiol. Immunol 2013 376 81 10210.1007/82_2013_33923900831Search in Google Scholar

Cianciotto N.P.: Type II secretion: A protein secretion system for all seasons. Trends. Microbiol., 2005; 13: 581-588Cianciotto N.P. Type II secretion: A protein secretion system for all seasons Trends. Microbiol 2005 13 581 58810.1016/j.tim.2005.09.00516216510Search in Google Scholar

White R.C., Cianciotto N.P.: Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: The Legionella type II secretion paradigm. Microb. Genom., 2019; 5: e000273White R.C. Cianciotto N.P. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: The Legionella type II secretion paradigm Microb. Genom 2019 5 e00027310.1099/mgen.0.000273661734131166887Search in Google Scholar

Cianciotto N.P., White R.C.: Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect. Immun., 2017; 85: e00014-17Cianciotto N.P. White R.C. Expanding role of type II secretion in bacterial pathogenesis and beyond Infect. Immun 2017 85 e00014 1710.1128/IAI.00014-17540084328264910Search in Google Scholar

Korotkov K.V., Sandkvist M.: Architecture, function, and substrates of the type II secretion system. EcoSal. Plus., 2019; 8: 10.1128/ ecosalplus.ESP-0034-2018Korotkov K.V. Sandkvist M. Architecture, function, and substrates of the type II secretion system EcoSal. Plus 2019 8 101128/ecosalplus.ESP-0034-2018Open DOISearch in Google Scholar

Abdel-Nour M., Duncan C., Low D.E., Guyard C.: Biofilms: The stronghold of Legionella pneumophila. Int. J. Mol. Sci., 2013; 14: 21660-21675Abdel-Nour M. Duncan C. Low D.E. Guyard C. Biofilms: The stronghold of Legionella pneumophila Int. J. Mol. Sci 2013 14 21660 2167510.3390/ijms141121660385602724185913Search in Google Scholar

Boamah D.K., Zhou G., Ensminger A.W., O’Connor T.J.: From many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella. Front. Cell. Infect. Microbiol., 2017; 7: 477Boamah D.K. Zhou G. Ensminger A.W. O’Connor T.J. From many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella Front. Cell. Infect. Microbiol 2017 7 47710.3389/fcimb.2017.00477571489129250488Search in Google Scholar

Liu X., Boyer M.A., Holmgren A.M., Shin S.: Legionella-infected macrophages engage the alveolar epithelium to metabolically reprogram myeloid cells and promote antibacterial inflammation. Cell Host Microbe, 2020; 28: 683-698.e6Liu X. Boyer M.A. Holmgren A.M. Shin S. Legionella-infected macrophages engage the alveolar epithelium to metabolically reprogram myeloid cells and promote antibacterial inflammation Cell Host Microbe 2020 28 683 698 e610.1016/j.chom.2020.07.01932841604Search in Google Scholar

Chaudhry R., Sreenath K., Agrawal S.K., Valavane A.: Legionella and Legionnaires’ disease: Time to explore in India. Indian. J. Med. Microbiol., 2018; 36: 324-333Chaudhry R. Sreenath K. Agrawal S.K. Valavane A. Legionella and Legionnaires’ disease: Time to explore in India Indian. J. Med. Microbiol 2018 36 324 33310.4103/ijmm.IJMM_18_29830429383Search in Google Scholar

Ditommaso S., Giacomuzzi M., Arauco Rivera S.R., Raso R., Ferrero P., Zotti C.M.: Virulence of Legionella pneumophila strains isolated from hospital water system and healthcare-associated Legionnaires’ disease in Northern Italy between 2004 and 2009. BMC Infect. Dis., 2014; 14: 483Ditommaso S. Giacomuzzi M. Arauco Rivera S.R. Raso R. Ferrero P. Zotti C.M. Virulence of Legionella pneumophila strains isolated from hospital water system and healthcare-associated Legionnaires’ disease in Northern Italy between 2004 and 2009 BMC Infect. Dis 2014 14 48310.1186/1471-2334-14-483416820425190206Search in Google Scholar

Gomez-Valero L., Rusniok C., Carson D., Mondino S., Pérez-Cobas A.E., Rolando M., Pasricha S., Reuter S., Demirtas J., Crumbach J. i wsp.: More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc. Natl. Acad. Sci. USA, 2019; 116: 2265-2273Gomez-Valero L. Rusniok C. Carson D. Mondino S. Pérez-Cobas A.E. Rolando M. Pasricha S. Reuter S. Demirtas J. Crumbach J. i wsp More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells Proc. Natl. Acad. Sci. USA 2019 116 2265 227310.1073/pnas.1808016116636978330659146Search in Google Scholar

Correia A.M., Ferreira J.S., Borges V., Nunes A., Gomes B., Capucho R., Gonçalves J., Antunes D.M., Almeida S., Mendes A. i wsp.: Probable person-to-person transmission of Legionnaires’ disease. N. Engl. J. Med., 2016; 374: 497-498Correia A.M. Ferreira J.S. Borges V. Nunes A. Gomes B. Capucho R. Gonçalves J. Antunes D.M. Almeida S. Mendes A. i wsp Probable person-to-person transmission of Legionnaires’ disease N. Engl. J. Med 2016 374 497 49810.1056/NEJMc150535626840151Search in Google Scholar

De Giglio O., Fasano F., Diella G., Lopuzzo M., Napoli C., Apollonio F., Brigida S., Calia C., Campanale C., Marzella A. i wsp.: Legionella and legionellosis in touristic-recreational facilities: Influence of climate factors and geostatistical analysis in Southern Italy (2001–2017). Environ. Res., 2019; 178: 108721De Giglio O. Fasano F. Diella G. Lopuzzo M. Napoli C. Apollonio F. Brigida S. Calia C. Campanale C. Marzella A. i wsp Legionella and legionellosis in touristic-recreational facilities: Influence of climate factors and geostatistical analysis in Southern Italy (2001–2017) Environ. Res 2019 178 10872110.1016/j.envres.2019.10872131541805Search in Google Scholar

Surveillance Atlas of Infectious Diseases. http://atlas.ecdc.europa.eu/public/index.aspx (01.11.2020)Surveillance Atlas of Infectious Diseases http://atlas.ecdc.europa.eu/public/index.aspx 01.11.2020Search in Google Scholar

Lin S.Y., Chen Y.H., Lu P.L., Tsai Y.M., Chen T.C.: An underestimated co-infection: Swine influenza and pneumonia due to Legionella pneumophila. Am. J. Med. Sci., 2016; 352: 314-316Lin S.Y. Chen Y.H. Lu P.L. Tsai Y.M. Chen T.C. An underestimated co-infection: Swine influenza and pneumonia due to Legionella pneumophila Am. J. Med. Sci 2016 352 314 31610.1016/j.amjms.2016.04.01027650238Search in Google Scholar

Faulkner G., Garduño R.A.: Ultrastructural analysis of differentiation in Legionella pneumophila. J. Bacteriol., 2002; 184: 70257041Faulkner G. Garduño R.A. Ultrastructural analysis of differentiation in Legionella pneumophila J. Bacteriol 2002 184 7025704110.1128/JB.184.24.7025-7041.200213545512446652Search in Google Scholar

Fuche F., Vianney A., Andrea C., Doublet P., Gilbert C.: Functional type 1 secretion system involved in Legionella pneumophila virulence. J. Bacteriol., 2015; 197: 563-571Fuche F. Vianney A. Andrea C. Doublet P. Gilbert C. Functional type 1 secretion system involved in Legionella pneumophila virulence J. Bacteriol 2015 197 563 57110.1128/JB.02164-14428597025422301Search in Google Scholar

Qin T., Zhou H., Ren H., Liu W.: Distribution of secretion systems in the genus Legionella and its correlation with pathogenicity. Front. Microbiol., 2017; 8: 388Qin T. Zhou H. Ren H. Liu W. Distribution of secretion systems in the genus Legionella and its correlation with pathogenicity Front. Microbiol 2017 8 38810.3389/fmicb.2017.00388534848728352254Search in Google Scholar

Nakano N., Kubori T., Kinoshita M., Imada K., Nagai H.: Crystal structure of Legionella DotD: Insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog., 2010; 6: e1001129Nakano N. Kubori T. Kinoshita M. Imada K. Nagai H. Crystal structure of Legionella DotD: Insights into the relationship between type IVB and type II/III secretion systems PLoS Pathog 2010 6 e100112910.1371/journal.ppat.1001129295136720949065Search in Google Scholar

White R.C., Truchan H.K., Zheng H., Tyson J.Y., Cianciotto N.P.: Type II secretion promotes bacterial growth within the Legionella-containing vacuole in infected amoebae. Infect. Immun., 2019; 87: e00374-19White R.C. Truchan H.K. Zheng H. Tyson J.Y. Cianciotto N.P. Type II secretion promotes bacterial growth within the Legionella-containing vacuole in infected amoebae Infect. Immun 2019 87 e00374 1910.1128/IAI.00374-19680334831405960Search in Google Scholar

De Buck E., Maes L., Meyen E., Van Mellaert L., Geukens N., Anné J., Lammertyn E.: Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem. Biophys. Res. Commun. 2005; 331: 1413-1420De Buck E. Maes L. Meyen E. Van Mellaert L. Geukens N. Anné J. Lammertyn E. Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation Biochem. Biophys. Res. Commun 2005 331 1413 142010.1016/j.bbrc.2005.04.06015883032Search in Google Scholar

Personnic N., Striednig B., Hilbi H.: Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms. ISME J., 2021; 15: 196-210Personnic N. Striednig B. Hilbi H. Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms ISME J 2021 15 196 21010.1038/s41396-020-00774-0785269532951019Search in Google Scholar

Abby S.S., Cury J., Guglielmini J., Néron B., Touchon M., Rocha E.P.: Identification of protein secretion systems in bacterial genomes. Sci. Rep., 2016; 6: 23080Abby S.S. Cury J. Guglielmini J. Néron B. Touchon M. Rocha E.P. Identification of protein secretion systems in bacterial genomes Sci. Rep 2016 6 2308010.1038/srep23080479323026979785Search in Google Scholar

Costa T.R., Felisberto-Rodrigues C., Meir A., Prevost M.S., Redzej A., Trokter M., Waksman G.: Secretion systems in Gramnegative bacteria: Structural and mechanistic insights. Nat. Rev. Microbiol., 2015; 13: 343-359Costa T.R. Felisberto-Rodrigues C. Meir A. Prevost M.S. Redzej A. Trokter M. Waksman G. Secretion systems in Gramnegative bacteria: Structural and mechanistic insights Nat. Rev. Microbiol 2015 13 343 35910.1038/nrmicro345625978706Search in Google Scholar

Lu C., Korotkov K.V., Hol W.G.: Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J. Struct. Biol., 2014; 187: 223-235Lu C. Korotkov K.V. Hol W.G. Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL J. Struct. Biol 2014 187 223 23510.1016/j.jsb.2014.07.006415074725092625Search in Google Scholar

Ghosal D., Kim K.W., Zheng H., Kaplan M., Truchan H.K., Lopez A.E., McIntire I.E., Vogel J.P., Cianciotto N.P., Jensen G.J.: In vivo structure of the Legionella type II secretion system by electron cryotomography. Nat. Microbiol., 2019; 4: 2101-2108Ghosal D. Kim K.W. Zheng H. Kaplan M. Truchan H.K. Lopez A.E. McIntire I.E. Vogel J.P. Cianciotto N.P. Jensen G.J. In vivo structure of the Legionella type II secretion system by electron cryotomography Nat. Microbiol 2019 4 2101 210810.1038/s41564-019-0603-6687991031754273Search in Google Scholar

Thomassin J.L., Santos Moreno J., Guilvout I., Tran Van Nhieu G., Francetic O.: The trans-envelope architecture and function of the type 2 secretion system: New insights raising new questions. Mol. Microbiol., 2017; 105: 211-226Thomassin J.L. Santos Moreno J. Guilvout I. Tran Van Nhieu G. Francetic O. The trans-envelope architecture and function of the type 2 secretion system: New insights raising new questions Mol. Microbiol 2017 105 211 22610.1111/mmi.1370428486768Search in Google Scholar

Filloux A., Voulhoux R.: Multiple structures disclose the secretins’ secrets. J. Bacteriol. 2018; 200: e00702-17Filloux A. Voulhoux R. Multiple structures disclose the secretins’ secrets J. Bacteriol 2018 200 e00702 1710.1128/JB.00702-17580968929263097Search in Google Scholar

Naskar S., Hohl M., Tassinari M., Low H.H.: The structure and mechanism of the bacterial type II secretion system. Mol. Microbiol., 2021; 115: 412-424Naskar S. Hohl M. Tassinari M. Low H.H. The structure and mechanism of the bacterial type II secretion system Mol. Microbiol 2021 115 412 42410.1111/mmi.1466433283907Search in Google Scholar

Nivaskumar M., Francetic O.: Type II secretion system: A magic beanstalk or a protein escalator. Biochim. Biophys. Acta, 2014; 1843: 1568-1577Nivaskumar M. Francetic O. Type II secretion system: A magic beanstalk or a protein escalator Biochim. Biophys. Acta 2014 1843 1568 157710.1016/j.bbamcr.2013.12.020Search in Google Scholar

Gray M.D., Bagdasarian M., Hol W.G., Sandkvist M.: In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae. Mol. Microbiol., 2011; 79: 786-798Gray M.D. Bagdasarian M. Hol W.G. Sandkvist M. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae Mol. Microbiol 2011 79 786 79810.1111/j.1365-2958.2010.07487.xSearch in Google Scholar

López-Castilla A., Thomassin J.L., Bardiaux B., Zheng W., Nivaskumar M., Yu X., Nilges M., Egelman E.H., Izadi-Pruneyre N., Francetic O.: Structure of the calcium-dependent type 2 secretion pseudopilus. Nat. Microbiol., 2017; 2: 1686-1695López-Castilla A. Thomassin J.L. Bardiaux B. Zheng W. Nivaskumar M. Yu X. Nilges M. Egelman E.H. Izadi-Pruneyre N. Francetic O. Structure of the calcium-dependent type 2 secretion pseudopilus Nat. Microbiol 2017 2 1686 169510.1038/s41564-017-0041-2Search in Google Scholar

Nunn D.: Bacterial type II protein export and pilus biogenesis: More than just homologies? Trends Cell Biol., 1999; 9: 402-408Nunn D. Bacterial type II protein export and pilus biogenesis: More than just homologies? Trends Cell Biol 1999 9 402 40810.1016/S0962-8924(99)01634-7Search in Google Scholar

Guilvout I., Chami M., Engel A., Pugsley A.P., Bayan N.: Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J., 2006; 25: 5241-5249Guilvout I. Chami M. Engel A. Pugsley A.P. Bayan N. Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin EMBO J 2006 25 5241 524910.1038/sj.emboj.7601402163660817082772Search in Google Scholar

Viarre V., Cascales E., Ball G., Michel G.P., Filloux A., Voulhoux R.: HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J. Biol. Chem., 2009; 284: 33815-33823Viarre V. Cascales E. Ball G. Michel G.P. Filloux A. Voulhoux R. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor J. Biol. Chem 2009 284 33815 3382310.1074/jbc.M109.065938279715119815547Search in Google Scholar

Carter T., Buensuceso R.N., Tammam S., Lamers R.P., Harvey H., Howell P.L., Burrows L.L.: The type IVa pilus machinery is recruited to sites of future cell division. mBio, 2017; 8: e02103-16Carter T. Buensuceso R.N. Tammam S. Lamers R.P. Harvey H. Howell P.L. Burrows L.L. The type IVa pilus machinery is recruited to sites of future cell division mBio 2017 8 e02103 1610.1128/mBio.02103-16528550428143978Search in Google Scholar

Yahashiri A., Jorgenson M.A., Weiss D.S.: The SPOR domain, a widely conserved peptidoglycan binding domain that targets proteins to the site of cell division. J. Bacteriol., 2017; 199: e00118-17Yahashiri A. Jorgenson M.A. Weiss D.S. The SPOR domain, a widely conserved peptidoglycan binding domain that targets proteins to the site of cell division J. Bacteriol 2017 199 e00118 1710.1128/JB.00118-17549474128396350Search in Google Scholar

Truchan H.K., Christman H.D., White R.C., Rutledge N.S., Cianciotto N.P.: Type II secretion substrates of Legionella pneumophila translocate out of the pathogen-occupied vacuole via a semipermeable membrane. mBio, 2017; 8: e00870-17Truchan H.K. Christman H.D. White R.C. Rutledge N.S. Cianciotto N.P. Type II secretion substrates of Legionella pneumophila translocate out of the pathogen-occupied vacuole via a semipermeable membrane mBio 2017 8 e00870 1710.1128/mBio.00870-17547889728634242Search in Google Scholar

Freudl R.: Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact., 2018; 17: 52Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems Microb. Cell Fact 2018 17 5210.1186/s12934-018-0901-3587501429598818Search in Google Scholar

Cianciotto N.P.: Many substrates and functions of type II secretion: Lessons learned from Legionella pneumophila. Future Microbiol., 2009; 4: 797-805Cianciotto N.P. Many substrates and functions of type II secretion: Lessons learned from Legionella pneumophila Future Microbiol 2009 4 797 80510.2217/fmb.09.53275469319722835Search in Google Scholar

Rusch S.L., Kendall D.A.: Interactions that drive Sec-dependent bacterial protein transport. Biochemistry, 2007; 46: 9665-9673Rusch S.L. Kendall D.A. Interactions that drive Sec-dependent bacterial protein transport Biochemistry 2007 46 9665 967310.1021/bi7010064267560717676771Search in Google Scholar

Denks K., Vogt A., Sacchelaru I., Petriman N.A., Kudva R., Koch H.G.: The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol. Membr. Biol., 2014; 31: 58-84Denks K. Vogt A. Sacchelaru I. Petriman N.A. Kudva R. Koch H.G. The Sec translocon mediated protein transport in prokaryotes and eukaryotes Mol. Membr. Biol 2014 31 58 8410.3109/09687688.2014.90745524762201Search in Google Scholar

Elvekrog M.M., Walter P.: Dynamics of co-translational protein targeting. Curr. Opin. Chem. Biol., 2015; 29: 79-86Elvekrog M.M. Walter P. Dynamics of co-translational protein targeting Curr. Opin. Chem. Biol 2015 29 79 8610.1016/j.cbpa.2015.09.016468444026517565Search in Google Scholar

Bechtluft P., Nouwen N., Tans S.J., Driessen A.J.: SecB – a chaperone dedicated to protein translocation. Mol. Biosyst., 2010; 6: 620-627Bechtluft P. Nouwen N. Tans S.J. Driessen A.J. SecB – a chaperone dedicated to protein translocation Mol. Biosyst 2010 6 620 62710.1039/B915435C20237639Search in Google Scholar

Lycklama A., Nijeholt J.A., Driessen A.J.: The bacterial Sec-translocase: Structure and mechanism. Philos. Trans. R. Soc. B. Lond. B Biol. Sci., 2012; 367: 1016-1028Lycklama A. Nijeholt J.A. Driessen A.J. The bacterial Sec-translocase: Structure and mechanism Philos. Trans. R. Soc. B. Lond. B Biol. Sci 2012 367 1016 102810.1098/rstb.2011.0201329743222411975Search in Google Scholar

Tsukazaki T., Mori H., Echizen Y., Ishitani R., Fukai S., Tanaka T., Perederina A., Vassylyev D.G., Kohno T., Maturana A.D., Ito K., Nureki O.: Structure and function of a membrane component SecDF that enhances protein export. Nature, 2011; 474: 235-238Tsukazaki T. Mori H. Echizen Y. Ishitani R. Fukai S. Tanaka T. Perederina A. Vassylyev D.G. Kohno T. Maturana A.D. Ito K. Nureki O. Structure and function of a membrane component SecDF that enhances protein export Nature 2011 474 235 23810.1038/nature09980369791521562494Search in Google Scholar

Dalbey R.E., Wang P., van Dijl J.M.: Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol. Mol. Biol. Rev., 2012; 76: 311-330Dalbey R.E. Wang P. van Dijl J.M. Membrane proteases in the bacterial protein secretion and quality control pathway Microbiol. Mol. Biol. Rev 2012 76 311 33010.1128/MMBR.05019-11337224822688815Search in Google Scholar

Palmer T., Berks B.C.: The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol., 2012; 10: 483-496Palmer T. Berks B.C. The twin-arginine translocation (Tat) protein export pathway Nat. Rev. Microbiol 2012 10 483 49610.1038/nrmicro281422683878Search in Google Scholar

Oertel D., Schmitz S., Freudl R.: A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032. PLoS One, 2015; 10: e0123413Oertel D. Schmitz S. Freudl R. A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032 PLoS One 2015 10 e012341310.1371/journal.pone.0123413438355925837592Search in Google Scholar

Sargent F., Stanley N.R., Berks B.C., Palmer T.: Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J. Biol. Chem., 1999; 274: 36073-36082Sargent F. Stanley N.R. Berks B.C. Palmer T. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein J. Biol. Chem 1999 274 36073 3608210.1074/jbc.274.51.36073Search in Google Scholar

Simone D., Bay D.C., Leach T., Turner R.J.: Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche. PLoS One, 2013; 8: e78742Simone D. Bay D.C. Leach T. Turner R.J. Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche PLoS One 2013 8 e7874210.1371/journal.pone.0078742Search in Google Scholar

Blaudeck N., Kreutzenbeck P., Müller M., Sprenger G.A., Freudl R.: Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J. Biol. Chem., 2005; 280: 3426-3432Blaudeck N. Kreutzenbeck P. Müller M. Sprenger G.A. Freudl R. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB J. Biol. Chem 2005 280 3426 343210.1074/jbc.M411210200Search in Google Scholar

Jongbloed J.D., van der Ploeg R., van Dijl J.M.: Bifunctional TatA subunits in minimal Tat protein translocases. Trends Microbiol., 2006; 14: 2-4Jongbloed J.D. van der Ploeg R. van Dijl J.M. Bifunctional TatA subunits in minimal Tat protein translocases Trends Microbiol 2006 14 2 410.1016/j.tim.2005.11.001Search in Google Scholar

Alami M., Lüke I., Deitermann S., Eisner G., Koch H.G., Brunner J., Müller M.: Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell, 2003; 12: 937-946Alami M. Lüke I. Deitermann S. Eisner G. Koch H.G. Brunner J. Müller M. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli Mol. Cell 2003 12 937 94610.1016/S1097-2765(03)00398-8Search in Google Scholar

Lausberg F., Fleckenstein S., Kreutzenbeck P., Fröbel J., Rose P., Müller M., Freudl R.: Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. PLoS One, 2012; 7: e39867Lausberg F. Fleckenstein S. Kreutzenbeck P. Fröbel J. Rose P. Müller M. Freudl R. Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli PLoS One 2012 7 e3986710.1371/journal.pone.0039867338369422761916Search in Google Scholar

Brüser T., Sanders C.: An alternative model of the twin arginine translocation system. Microbiol. Res., 2003; 158: 7-17Brüser T. Sanders C. An alternative model of the twin arginine translocation system Microbiol. Res 2003 158 7 1710.1078/0944-5013-0017612608575Search in Google Scholar

Gohlke U., Pullan L., McDevitt C.A., Porcelli I., de Leeuw E., Palmer T., Saibil H.R., Berks B.C.: The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc. Natl. Acad. Sci. USA, 2005; 102: 10482-10486Gohlke U. Pullan L. McDevitt C.A. Porcelli I. de Leeuw E. Palmer T. Saibil H.R. Berks B.C. The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter Proc. Natl. Acad. Sci. USA 2005 102 10482 1048610.1073/pnas.0503558102118078116027357Search in Google Scholar

Mori H., Cline K.: A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase. J. Cell Biol., 2002; 157: 205-210Mori H. Cline K. A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase J. Cell Biol 2002 157 205 21010.1083/jcb.200202048219925211956224Search in Google Scholar

Lüke I., Hanford J.I., Palmer T., Sargent F.: Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Arch. Microbiol., 2009; 191: 919-925Lüke I. Hanford J.I. Palmer T. Sargent F. Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB Arch. Microbiol 2009 191 919 92510.1007/s00203-009-0516-519809807Search in Google Scholar

Hospenthal M.K., Costa T.R., Waksman G.A.: A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol., 2017; 15: 365-379Hospenthal M.K. Costa T.R. Waksman G.A. A comprehensive guide to pilus biogenesis in Gram-negative bacteria Nat. Rev. Microbiol 2017 15 365 37910.1038/nrmicro.2017.4028496159Search in Google Scholar

Peabody C.R., Chung Y.J., Yen M.R., Vidal-Ingigliardi D., Pugsley A.P., Saier M.H.: Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology, 2003; 149: 3051-3072Peabody C.R. Chung Y.J. Yen M.R. Vidal-Ingigliardi D. Pugsley A.P. Saier M.H. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella Microbiology 2003 149 3051 307210.1099/mic.0.26364-014600218Search in Google Scholar

Francetić O., Pugsley A.P.: Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J. Bacteriol., 2005; 187: 7045-7055Francetić O. Pugsley A.P. Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca J. Bacteriol 2005 187 7045 705510.1128/JB.187.20.7045-7055.2005125160016199575Search in Google Scholar

Johnson T.L., Abendroth J., Hol W.G., Sandkvist M.: Type II secretion: From structure to function. FEMS Microbiol. Lett., 2006; 255: 175-186Johnson T.L. Abendroth J. Hol W.G. Sandkvist M. Type II secretion: From structure to function FEMS Microbiol. Lett 2006 255 175 18610.1111/j.1574-6968.2006.00102.x16448494Search in Google Scholar

Liles M.R., Viswanathan V.K., Cianciotto N.P.: Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect. Immun., 1998; 66: 1776-1782Liles M.R. Viswanathan V.K. Cianciotto N.P. Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion Infect. Immun 1998 66 1776 178210.1128/IAI.66.4.1776-1782.19981081209529113Search in Google Scholar

Liles M.R., Edelstein P.H., Cianciotto N.P.: The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol. Microbiol., 1999; 31: 959-970Liles M.R. Edelstein P.H. Cianciotto N.P. The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila Mol. Microbiol 1999 31 959 97010.1046/j.1365-2958.1999.01239.x10048038Search in Google Scholar

Hales L.M., Shuman H.A.: Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect. Immun. 1999; 67: 3662-3666Hales L.M. Shuman H.A. Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease Infect. Immun 1999 67 3662 366610.1128/IAI.67.7.3662-3666.199911656110377156Search in Google Scholar

Rossier O., Cianciotto N.P.: Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect. Immun., 2001; 69: 20922098Rossier O. Cianciotto N.P. Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila Infect. Immun 2001 69 2092209810.1128/IAI.69.4.2092-2098.20019813411254562Search in Google Scholar

Rossier O., Starkenburg S.R., Cianciotto N.P.: Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires’ disease pneumonia. Infect. Immun., 2004; 72: 310-321Rossier O. Starkenburg S.R. Cianciotto N.P. Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires’ disease pneumonia Infect. Immun 2004 72 310 32110.1128/IAI.72.1.310-321.200434401214688110Search in Google Scholar

Cazalet C., Rusniok C., Bruggemann H., Zidane N., Magnier A., Ma L., Tichit M., Jarraud S., Bouchier C., Vandenesch F. i wsp.: Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet., 2004; 36: 1165-1173Cazalet C. Rusniok C. Bruggemann H. Zidane N. Magnier A. Ma L. Tichit M. Jarraud S. Bouchier C. Vandenesch F. i wsp Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity Nat. Genet 2004 36 1165 117310.1038/ng144715467720Search in Google Scholar

Chien M., Morozova I., Shi S., Sheng H., Chen J., Gomez S.M., Asamani G., Hill K., Nuara J., Feder M. i wsp.: The genomic sequence of the accidental pathogen Legionella pneumophila. Science, 2004; 305: 1966-1968Chien M. Morozova I. Shi S. Sheng H. Chen J. Gomez S.M. Asamani G. Hill K. Nuara J. Feder M. i wsp The genomic sequence of the accidental pathogen Legionella pneumophila Science 2004 305 1966 196810.1126/science.109977615448271Search in Google Scholar

Glöckner G., Albert-Weissenberger C., Weinmann E., Jacobi S., Schunder E., Steinert M., Hacker J., Heuner K.: Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int. J. Med. Microbiol., 2008; 298: 411-428Glöckner G. Albert-Weissenberger C. Weinmann E. Jacobi S. Schunder E. Steinert M. Hacker J. Heuner K. Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands Int. J. Med. Microbiol 2008 298 411 42810.1016/j.ijmm.2007.07.01217888731Search in Google Scholar

DebRoy S., Dao J., Söderberg M., Rossier O., Cianciotto N.P.: Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc. Natl. Acad. Sci. USA, 2006; 103: 19146-19151DebRoy S. Dao J. Söderberg M. Rossier O. Cianciotto N.P. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung Proc. Natl. Acad. Sci. USA 2006 103 19146 1915110.1073/pnas.0608279103174819017148602Search in Google Scholar

White R.C., Gunderson F.F., Tyson J.Y., Richardson K.H., Portlock T.J., Garnett J.A., Cianciotto N.P.: Type II secretiondependent aminopeptidase LapA and acyltransferase PlaC are redundant for nutrient acquisition during Legionella pneumophila intracellular infection of amoebas. mBio, 2018; 9: e00528-18White R.C. Gunderson F.F. Tyson J.Y. Richardson K.H. Portlock T.J. Garnett J.A. Cianciotto N.P. Type II secretiondependent aminopeptidase LapA and acyltransferase PlaC are redundant for nutrient acquisition during Legionella pneumophila intracellular infection of amoebas mBio 2018 9 e00528 1810.1128/mBio.00528-18590440729666285Search in Google Scholar

Pearce M.M., Cianciotto N.P.: Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol. Lett., 2009; 300: 256-264Pearce M.M. Cianciotto N.P. Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion FEMS Microbiol. Lett 2009 300 256 26410.1111/j.1574-6968.2009.01801.x276643219817866Search in Google Scholar

Herrmann V., Eidner A., Rydzewski K., Blädel I., Jules M., Buchrieser C., Eisenreich W., Heuneret K.: GamA is a eukaryoticlike glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int. J. Med. Microbiol., 2011; 301: 133-139Herrmann V. Eidner A. Rydzewski K. Blädel I. Jules M. Buchrieser C. Eisenreich W. Heuneret K. GamA is a eukaryoticlike glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila Int. J. Med. Microbiol 2011 301 133 13910.1016/j.ijmm.2010.08.01620965781Search in Google Scholar

Rossier O., Dao J., Cianciotto N.P.: The type II secretion system of Legionella pneumophila elaborates two aminopeptidases as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl. Environ. Microbiol., 2008; 74: 753-761Rossier O. Dao J. Cianciotto N.P. The type II secretion system of Legionella pneumophila elaborates two aminopeptidases as well as a metalloprotease that contributes to differential infection among protozoan hosts Appl. Environ. Microbiol 2008 74 753 76110.1128/AEM.01944-07222773118083880Search in Google Scholar

Abdel-Nour M., Duncan C., Prashar A., Rao C., Ginevra C., Jarraud S., Low D.E., Ensminger A.W., Terebiznik M.R., Guyard C.: The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl. Environ. Microbiol., 2014; 80: 1441-1454Abdel-Nour M. Duncan C. Prashar A. Rao C. Ginevra C. Jarraud S. Low D.E. Ensminger A.W. Terebiznik M.R. Guyard C. The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions Appl. Environ. Microbiol 2014 80 1441 145410.1128/AEM.03254-13391107024334670Search in Google Scholar

Aragon V., Rossier O., Cianciotto N.P.: Legionella pneumophila genes that encode lipase and phospholipase C activities. Microbiology, 2002; 148: 2223-2231Aragon V. Rossier O. Cianciotto N.P. Legionella pneumophila genes that encode lipase and phospholipase C activities Microbiology 2002 148 2223 223110.1099/00221287-148-7-222312101309Search in Google Scholar

Söderberg M.A., Cianciotto N.P.: A Legionella pneumophila pep-tidyl-prolyl cis-trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures. Appl. Environ. Microbiol., 2008; 74: 1634-1638Söderberg M.A. Cianciotto N.P. A Legionella pneumophila pep-tidyl-prolyl cis-trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures Appl. Environ. Microbiol 2008 74 1634 163810.1128/AEM.02512-07225860918165359Search in Google Scholar

Aragon V., Kurtz S., Cianciotto N.P.: Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect. Immun., 2001; 69: 177-185Aragon V. Kurtz S. Cianciotto N.P. Legionella pneumophila major acid phosphatase and its role in intracellular infection Infect. Immun 2001 69 177 18510.1128/IAI.69.1.177-185.20019787011119504Search in Google Scholar

Tyson J.Y., Vargas P., Cianciotto N.P.: The novel Legionella pneumophila type II secretion substrate NttC contriubtes to infection of amoebae Hartmannella vermiformis and Willaertia magna. Microbiology, 2014; 160: 2732-2744Tyson J.Y. Vargas P. Cianciotto N.P. The novel Legionella pneumophila type II secretion substrate NttC contriubtes to infection of amoebae Hartmannella vermiformis and Willaertia magna Microbiology 2014 160 2732 274410.1099/mic.0.082750-0425291125253612Search in Google Scholar

Flieger A., Gong S., Faigle M., Stevanovic S., Cianciotto N.P., Neumeister B.: Novel lysophospholipase A secreted by Legionella pneumophila. J. Bacteriol., 2001; 183: 2121-2124Flieger A. Gong S. Faigle M. Stevanovic S. Cianciotto N.P. Neumeister B. Novel lysophospholipase A secreted by Legionella pneumophila J. Bacteriol 2001 183 2121 212410.1128/JB.183.6.2121-2124.20019511111222614Search in Google Scholar

Flieger A., Neumeister B., Cianciotto N.P.: Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect. Immun., 2002; 70: 6094-6106Flieger A. Neumeister B. Cianciotto N.P. Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine Infect. Immun 2002 70 6094 610610.1128/IAI.70.11.6094-6106.200213042212379686Search in Google Scholar

Banerji S., Bewersdorff M., Hermes B., Cianciotto N.P., Flieger A.: Characterization of the major secreted zinc metalloproteasedependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila. Infect. Immun., 2005; 73: 2899-2909Banerji S. Bewersdorff M. Hermes B. Cianciotto N.P. Flieger A. Characterization of the major secreted zinc metalloproteasedependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila Infect. Immun 2005 73 2899 290910.1128/IAI.73.5.2899-2909.2005108737015845496Search in Google Scholar

McCoy-Simandle K., Stewart C.R., Dao J., DebRoy S., Rossier O., Bryce P.J., Cianciotto N.P.: Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia. Infect. Immun., 2011; 79: 1984-1997McCoy-Simandle K. Stewart C.R. Dao J. DebRoy S. Rossier O. Bryce P.J. Cianciotto N.P. Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia Infect. Immun 2011 79 1984 199710.1128/IAI.01077-10308815621383054Search in Google Scholar

Rossier O., Dao J., Cianciotto N.P.: A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. Microbiology, 2009; 155: 882-890Rossier O. Dao J. Cianciotto N.P. A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis Microbiology 2009 155 882 89010.1099/mic.0.023218-0266239119246759Search in Google Scholar

Hiller M., Lang C., Michel W., Flieger A.: Secreted phospholipases of the lung pathogen Legionella pneumophila. Int. J. Med. Microbiol., 2018; 308: 168-175Hiller M. Lang C. Michel W. Flieger A. Secreted phospholipases of the lung pathogen Legionella pneumophila Int. J. Med. Microbiol 2018 308 168 17510.1016/j.ijmm.2017.10.00229108710Search in Google Scholar

Flieger A., Frischknecht F., Häcker G., Hornef M.W., Pradel G.: Pathways of host cell exit by intracellular pathogens. Microb. Cell, 2018; 5: 525-544Flieger A. Frischknecht F. Häcker G. Hornef M.W. Pradel G. Pathways of host cell exit by intracellular pathogens Microb. Cell 2018 5 525 54410.15698/mic2018.12.659628202130533418Search in Google Scholar

Hoffmann C., Harrison C.F., Hilbi H.: The natural alternative: Protozoa as cellular models for Legionella infection. Cell. Microbiol., 2014; 16: 15-26Hoffmann C. Harrison C.F. Hilbi H. The natural alternative: Protozoa as cellular models for Legionella infection Cell. Microbiol 2014 16 15 2610.1111/cmi.1223524168696Search in Google Scholar

Lang C., Rastew E., Hermes B., Siegbrecht E., Ahrends R., Banerji S., Flieger A.: Zinc metalloproteinase ProA directly activates Legionella pneumophila PlaC glycerophospholipid:cholesterol acyltransferase. J. Biol. Chem., 2012; 287: 23464-23478Lang C. Rastew E. Hermes B. Siegbrecht E. Ahrends R. Banerji S. Flieger A. Zinc metalloproteinase ProA directly activates Legionella pneumophila PlaC glycerophospholipid:cholesterol acyltransferase J. Biol. Chem 2012 287 23464 2347810.1074/jbc.M112.346387339062322582391Search in Google Scholar

Banerji S., Aurass P., Flieger A.: The manifold phospholipases A of Legionella pneumophila – identification, export, regulation, and their link to bacterial virulence. Int. J. Med. Microbiol., 2008; 298: 169-181Banerji S. Aurass P. Flieger A. The manifold phospholipases A of Legionella pneumophila – identification, export, regulation, and their link to bacterial virulence Int. J. Med. Microbiol 2008 298 169 18110.1016/j.ijmm.2007.11.00418178130Search in Google Scholar

Best A., Jones S., Abu Kwaik Y.: Mammalian solute carrier (SLC)-like transporters of Legionella pneumophila. Sci. Rep., 2018; 8: 8352Best A. Jones S. Abu Kwaik Y. Mammalian solute carrier (SLC)-like transporters of Legionella pneumophila Sci. Rep 2018 8 835210.1038/s41598-018-26782-x597423429844490Search in Google Scholar

Price C.T., Richards A.M., Von Dwingelo J.E., Samara H.A, Abu Kwaik Y.: Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution. Environ. Microbiol., 2014; 16: 350-358Price C.T. Richards A.M. Von Dwingelo J.E. Samara H.A Abu Kwaik Y. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution Environ. Microbiol 2014 16 350 35810.1111/1462-2920.12290394689124112119Search in Google Scholar

Rehman S., Grigoryeva L.S., Richardson K.H., Corsini P., White R.C., Shaw R., Portlock T.J., Dorgan B., Zanjani Z.S., Fornili A., Cianciotto N.P., Garnett J.A.: Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog., 2020; 16: e1008342Rehman S. Grigoryeva L.S. Richardson K.H. Corsini P. White R.C. Shaw R. Portlock T.J. Dorgan B. Zanjani Z.S. Fornili A. Cianciotto N.P. Garnett J.A. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation PLoS Pathog 2020 16 e100834210.1371/journal.ppat.1008342722457432365117Search in Google Scholar

Portlock T.J., Tyson J.Y., Dantu S.C., Rehman S., White R.C., McIntire I.E., Sewell L., Richardson K., Shaw R., Pandini A., Cianciotto N.P., Garnett J.A.: Structure, dynamics and cellular insight into novel substrates of the Legionella pneumophila type II secretion system. Front. Mol. Biosci., 2020; 7: 112Portlock T.J. Tyson J.Y. Dantu S.C. Rehman S. White R.C. McIntire I.E. Sewell L. Richardson K. Shaw R. Pandini A. Cianciotto N.P. Garnett J.A. Structure, dynamics and cellular insight into novel substrates of the Legionella pneumophila type II secretion system Front. Mol. Biosci 2020 7 11210.3389/fmolb.2020.00112732595732656228Search in Google Scholar

de Felipe K.S., Glover R.T., Charpentier X., Anderson O.R., Reyes R., Pericone C.D, Shuman H.A.: Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog., 2008; 4: e1000117de Felipe K.S. Glover R.T. Charpentier X. Anderson O.R. Reyes R. Pericone C.D Shuman H.A. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking PLoS Pathog 2008 4 e100011710.1371/journal.ppat.1000117247551118670632Search in Google Scholar

de Felipe K.S., Pampou S., Jovanovic O.S., Pericone C.D., Ye S.F., Kalachikov S., Shuman H.A.: Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol., 2005; 187: 7716-7726de Felipe K.S. Pampou S. Jovanovic O.S. Pericone C.D. Ye S.F. Kalachikov S. Shuman H.A. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer J. Bacteriol 2005 187 7716 772610.1128/JB.187.22.7716-7726.2005128029916267296Search in Google Scholar

Gomez-Valero L., Rusniok C., Cazalet C., Buchrieser C.: Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front. Microbiol., 2011; 2: 208Gomez-Valero L. Rusniok C. Cazalet C. Buchrieser C. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions Front. Microbiol 2011 2 20810.3389/fmicb.2011.00208320337422059087Search in Google Scholar

Lurie-Weinberger M.N., Gomez-Valero L., Merault N., Glöckner G., Buchrieser C., Gophna U.: The origins of eukaryotic-like proteins in Legionella pneumophila. Int. J. Med. Microbiol., 2010; 300: 470-481Lurie-Weinberger M.N. Gomez-Valero L. Merault N. Glöckner G. Buchrieser C. Gophna U. The origins of eukaryotic-like proteins in Legionella pneumophila Int. J. Med. Microbiol 2010 300 470 48110.1016/j.ijmm.2010.04.01620537944Search in Google Scholar

Schroeder G.N., Petty N.K., Mousnier A., Harding C.R., Vogrin A.J., Wee B., Fry N.K., Harrison T.G., Newton H.J., Thomson N.R. i wsp.: Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J. Bacteriol., 2010; 192: 6001-6016Schroeder G.N. Petty N.K. Mousnier A. Harding C.R. Vogrin A.J. Wee B. Fry N.K. Harrison T.G. Newton H.J. Thomson N.R. i wsp Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins J. Bacteriol 2010 192 6001 601610.1128/JB.00778-10297644320833813Search in Google Scholar

Hughes E.D., Swanson M.S.: How Legionella defend their turf. eLife, 2019; 8: e48695Hughes E.D. Swanson M.S. How Legionella defend their turf eLife 2019 8 e4869510.7554/eLife.48695659875831251173Search in Google Scholar

Duncan C., Prashar A., So J., Tang P., Low D.E., Terebiznik M., Guyard C.: Lcl of Legionella pneumophila is an immunogenic GAG binding adhesion that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect. Immun., 2011; 79: 2168-2181Duncan C. Prashar A. So J. Tang P. Low D.E. Terebiznik M. Guyard C. Lcl of Legionella pneumophila is an immunogenic GAG binding adhesion that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation Infect. Immun 2011 79 2168 218110.1128/IAI.01304-10312584021422183Search in Google Scholar

Lucas C.E., Brown E., Fields B.S.: Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology, 2006; 152: 3569-3573Lucas C.E. Brown E. Fields B.S. Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention Microbiology 2006 152 3569 357310.1099/mic.0.2006/000497-017159209Search in Google Scholar

Stewart C.R., Rossier O., Cianciotto N.P.: Surface translocation by Legionella pneumophila: A form of sliding motility that is dependent upon type II protein secretion. J. Bacteriol., 2009; 191: 1537-1546Stewart C.R. Rossier O. Cianciotto N.P. Surface translocation by Legionella pneumophila: A form of sliding motility that is dependent upon type II protein secretion J. Bacteriol 2009 191 1537 154610.1128/JB.01531-08264819319114479Search in Google Scholar

Söderberg M.A., Rossier O., Cianciotto N.P.: The Type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol., 2004; 186: 3712-3720Söderberg M.A. Rossier O. Cianciotto N.P. The Type II protein secretion system of Legionella pneumophila promotes growth at low temperatures J Bacteriol 2004 186 3712 372010.1128/JB.186.12.3712-3720.200441995615175284Search in Google Scholar

Söderberg M.A., Dao J., Starkenburg S. R., Cianciotto N. P.: Importance of type II secretion for survival of Legionella pneumophila in tap water and in amoebae at low temperatures. Appl. Environ. Microbiol., 2008; 74: 5583-5588Söderberg M.A. Dao J. Starkenburg S. R. Cianciotto N. P. Importance of type II secretion for survival of Legionella pneumophila in tap water and in amoebae at low temperatures Appl. Environ. Microbiol 2008 74 5583 558810.1128/AEM.00067-08254664018621869Search in Google Scholar

Tyson J.Y., Pearce M.M., Vargas P., Bagchi S., Mulhern B.J., Cianciotto N.P.: Multiple Legionella pneumophila type II secretion substrates, including a novel protein, contribute to differential infection of amoebae Acanthamoeba castellanii, Hartmannella vermiformis, and Naegleria lovaniensis. Infect. Immun., 2013; 81: 1399-1410Tyson J.Y. Pearce M.M. Vargas P. Bagchi S. Mulhern B.J. Cianciotto N.P. Multiple Legionella pneumophila type II secretion substrates, including a novel protein, contribute to differential infection of amoebae Acanthamoeba castellanii, Hartmannella vermiformis, and Naegleria lovaniensis Infect. Immun 2013 81 1399 141010.1128/IAI.00045-13364800323429532Search in Google Scholar

Polesky A.H., Ross J.T., Falkow S., Tompkins L.S.: Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect. Immun., 2001; 69: 977-987Polesky A.H. Ross J.T. Falkow S. Tompkins L.S. Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis Infect. Immun 2001 69 977 98710.1128/IAI.69.2.977-987.20019797711159993Search in Google Scholar

White R.C., Cianciotto N.P.: Type II secretion is necessary for optimal association of the Legionella-containing vacuole with macrophage Rab1B but enhances intracellular replication mainly by Rab1B-independent mechanisms. Infect. Immun., 2016; 84: 33133327White R.C. Cianciotto N.P. Type II secretion is necessary for optimal association of the Legionella-containing vacuole with macrophage Rab1B but enhances intracellular replication mainly by Rab1B-independent mechanisms Infect. Immun 2016 84 3313332710.1128/IAI.00750-16511671027600508Search in Google Scholar

Mallama C.A., McCoy-Simandle K., Cianciotto N.P.: The type II secretion system of Legionella pneumophila dampens the MyD88 and Toll-like receptor 2 signaling pathway in infected human macrophages. Infect. Immun., 2017; 85: e00897-16Mallama C.A. McCoy-Simandle K. Cianciotto N.P. The type II secretion system of Legionella pneumophila dampens the MyD88 and Toll-like receptor 2 signaling pathway in infected human macrophages Infect. Immun 2017 85 e00897 1610.1128/IAI.00897-16536429828138020Search in Google Scholar

Grabiec A., Meng G., Fichte S., Bessler W., Wagner H., Kirschning C.J.: Human but not murine Toll-like receptor 2 discriminates between tri-palmitoylated and tri-lauroylated peptides. J. Biol. Chem., 2004; 279: 48004-48012Grabiec A. Meng G. Fichte S. Bessler W. Wagner H. Kirschning C.J. Human but not murine Toll-like receptor 2 discriminates between tri-palmitoylated and tri-lauroylated peptides J. Biol. Chem 2004 279 48004 4801210.1074/jbc.M40531120015342637Search in Google Scholar

Lang C., Hiller M., Flieger A.: Disulfide loop cleavage of Legionella pneumophila PlaA boosts lysophospholipase A activity. Sci. Rep., 2017; 7: 16313Lang C. Hiller M. Flieger A. Disulfide loop cleavage of Legionella pneumophila PlaA boosts lysophospholipase A activity Sci. Rep 2017 7 1631310.1038/s41598-017-12796-4570117429176577Search in Google Scholar

Jan A.T.: Outer membrane vesicles (OMVs) of gram-negative bacteria: A perspective update. Front. Microbiol., 2017; 8: 1053Jan A.T. Outer membrane vesicles (OMVs) of gram-negative bacteria: A perspective update Front. Microbiol 2017 8 105310.3389/fmicb.2017.01053546529228649237Search in Google Scholar

eISSN:
1732-2693
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Microbiology and Virology, Medicine, Basic Medical Science, Immunology