Otwarty dostęp

Anaerobic Digestion and Composting as Methods of Bio-Waste Management


Zacytuj

Abdelsalam, E. M., Samer, M., Amer, M. A., & Amer, B. M. (2021). Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Environment, Development and Sustainability, 23(6), 8746-8757. https://doi.org/10.1007/s10668-020-00991-9 Search in Google Scholar

Ajmal, M., Shi, A., Awais, M., Mengqi, Z., Zihao, X., Shabbir, A., Faheem, M., Wei, W., & Ye, L. (2021). Ultra-high temperature aerobic fermentation pretreatment composting: Parameters optimization, mechanisms and compost quality assessment. Journal of Environmental Chemical Engineering, 9(4), 105453. https://doi.org/10.1016/j.jece.2021.105453. Search in Google Scholar

Alessi, A., Lopes, A. D. C. P., Müller, W., Gerke, F., Robra, S., & Bockreis, A. (2020). Mechanical separation of impurities in biowaste: Comparison of four different pretreatment systems. Waste Management, 106, 12-20. https://doi.org/10.1016/j.wasman.2020.03.006 Search in Google Scholar

Awais, M., Li, W., Munir, A., Omar, M. M., & Ajmal, M. (2021). Experimental investigation of downdraft biomass gasifier fed by sugarcane bagasse and coconut shells. Biomass Conversion and Biorefinery, 11, 429-444. https://doi.org/10.1007/s13399-020-00690-5 Search in Google Scholar

Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456. Search in Google Scholar

Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic agriculture, 8, 141-158. 10.1007/s13165-017-0180-z Search in Google Scholar

Balanda, O., Serafinowska, D., Marchenko, O., Svystunova, I. (2022). Innovative Technology of Accelerated Composting of Chicken Manure to Obtain an Organic Fertilizer with a High Content of Humic Acids. Agricultural Engineering, 26(1) 133-144. https://doi.org/10.2478/agriceng-2022-0011 Search in Google Scholar

Baron, V., Saoud, M., Jupesta, J., Praptantyo, I. R., Admojo, H. T., Bessou, C., & Caliman, J. P. (2019). Critical parameters in the life cycle inventory of palm oil mill residues composting. Indonesian Journal of Life Cycle Assessment and Sustainability, 3(1), https://doi.org/10.52394/ijolcas.v3i1.72 Search in Google Scholar

Barrón-Santos, F. J., Gutiérrez-Castillo, M. E., Tovar-Gálvez, L. R., Teresa, M., Núñez-Cardona, R. E. N., Tapia, C. R., & Espitia-Cabrera, A. (2021). Improving Compost Process Efficiency by Leachates Inoculation and Shredding of the Organic Fraction of Municipal Solid Waste at Bordo Poniente Composting Plant, Mexico City. Journal of Environmental Science and Engineering, 10, 177-183. 10.17265/2162-5298/2021.05.003 Search in Google Scholar

Barthod, J., Rumpel, C., & Dignac, M. F. (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9. Search in Google Scholar

Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). Biogas production–A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and sustainable Energy reviews, 90, 570-582. https://doi.org/10.1016/j.rser.2018.03.093 Search in Google Scholar

Bojarski, W., Czekała, W., Nowak, M., & Dach, J. (2023). Production of compost from logging residues. Bioresource Technology, 376, 128878. https://doi.org/10.1016/j.biortech.2023.128878 Search in Google Scholar

Borek, K., & Romaniuk, W. (2020a). Biogas installations for harvesting energy and utilization of natural fertilisers. Agricultural Engineering, 24(1), 1-14. https://doi.org/10.1515/agriceng-2020-0001 Search in Google Scholar

Borek, K., & Romaniuk, W. (2020b). Possibilities of obtaining renewable energy in dairy farming. Agricultural Engineering, 24(2), 9-20. https://doi.org/10.1515/agriceng-2020-0012 Search in Google Scholar

Borek, K., Romaniuk, W., Roman, K., Roman, M., & Kuboń, M. (2021). The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates. Energies 2021, 14(8), 2132. https://doi.org/10.3390/en14082132 Search in Google Scholar

Cáceres, R., Malińska, K., & Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, 119-137. https://doi.org/10.1016/j.wasman.2017.10.049 Search in Google Scholar

Cecchi, F., & Cavinato, C. (2015). Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects. Waste Management & Research, 33(5), 429-438. https://doi.org/10.1177/0734242X14568610 Search in Google Scholar

Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource technology, 248, 57-67. https://doi.org/10.1016/j.biortech.2017.06.133 Search in Google Scholar

Chang, H. Q., Zhu, X. H., Wu, J., Guo, D. Y., Zhang, L. H., & Feng, Y. (2021). Dynamics of microbial diversity during the composting of agricultural straw. Journal of Integrative Agriculture, 20(5), 1121-1136. https://doi.org/10.1016/S2095-3119(20)63341-X Search in Google Scholar

Czekała, W. (2021). Solid Fraction of Digestate from Biogas Plant as a Material for Pellets Production. Energies, 14(16), 5034. https://doi.org/10.3390/en14165034 Search in Google Scholar

Czekała, W. (2022). Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water, 14(24), 4067. https://doi.org/10.3390/w14244067 Search in Google Scholar

Czekała, W., Nowak, M., & Bojarski, W. (2023). Characteristics of Substrates Used for Biogas Production in Terms of Water Content. Fermentation, 9(5), 449. https://doi.org/10.3390/fermentation9050449 Search in Google Scholar

Czekała, W., Janczak, D., Pochwatka, P., Nowak, M., & Dach, J. (2022). Gases Emissions during Composting Process of Agri-Food Industry Waste. Applied Sciences, 12, 9245. https://doi.org/10.3390/app12189245 Search in Google Scholar

Dach, J., Pulka, J., Janczak, D., Lewicki, A., Pochwatka, P., & Oniszczuk, T. (2020). Energetic Assessment of Biogas Plant Projects Based on Biowaste and Maize Silage Usage. In IOP Conference Series: Earth and Environmental Science, 505(1), 012029. https://doi.org/10.1088/1755-1315/505/1/012029 Search in Google Scholar

Dalahmeh, S. S., Thorsén, G., & Jönsson, H. (2022). Open-air storage with and without composting as post-treatment methods to degrade pharmaceutical residues in anaerobically digested and de-watered sewage sludge. Science of the Total Environment, 806, 151271. https://doi.org/10.1016/j.scitotenv.2021.151271 Search in Google Scholar

Demichelis, F., Piovano, F., & Fiore, S. (2019). Biowaste management in Italy: Challenges and perspectives. Sustainability, 11(15), 4213. https://doi.org/10.3390/su11154213 Search in Google Scholar

Enebe, M. C., & Erasmus, M. (2023). Mediators of biomass transformation–a focus on the enzyme composition of the vermicomposting process. Environmental Challenges, 12, 100732. https://doi.org/10.1016/j.envc.2023.100732 Search in Google Scholar

Ge, M., Shen, Y., Ding, J., Meng, H., Zhou, H., Zhou, J., Cheng, H., Zhang, X., Wang, J., Wang, H., Cheng, Q., Li, R., & Liu, J. (2022). New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. Bioresource Technology, 344, 126236. https://doi.org/10.1016/j.biortech.2021.126236 Search in Google Scholar

Ghosh, S. K. (2016). Biomass & bio-waste supply chain sustainability for bio-energy and bio-fuel production. Procedia Environmental Sciences, 31, 31-39. https://doi.org/10.1016/j.proenv.2016.02.005 Search in Google Scholar

Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P. C., & Sekhar, J. (2021). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302, 121153. https://doi.org/10.1016/j.fuel.2021.121153 Search in Google Scholar

Główny Urząd Statystyczny. (2018). Ochrona środowiska 2018. Warszawa: Wydawnictwo GUS. Search in Google Scholar

Główny Urząd Statystyczny. (2019). Ochrona środowiska 2019. Warszawa: Wydawnictwo GUS. Search in Google Scholar

Główny Urząd Statystyczny. (2020). Ochrona środowiska 2020. Warszawa: Wydawnictwo GUS. Search in Google Scholar

Główny Urząd Statystyczny. (2021). Ochrona środowiska 2021. Warszawa: Wydawnictwo GUS. Search in Google Scholar

Główny Urząd Statystyczny. (2022). Ochrona środowiska 2022. Warszawa: Wydawnictwo GUS. Search in Google Scholar

Graça, J., Murphy, B., Pentlavalli, P., Allen, C. C., Bird, E., Gaffney, M., Duggan, T., & Kelleher, B. (2021). Bacterium consortium drives compost stability and degradation of organic contaminants in in-vessel composting process of the mechanically separated organic fraction of municipal solid waste (MS-OFMSW). Bioresource Technology Reports, 13, 100621. https://doi.org/10.1016/j.biteb.2020.100621 Search in Google Scholar

Haouas, A., El Modafar, C., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A., & Amir, S. (2021). Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge. Journal of Cleaner Production, 302, 127051. https://doi.org/10.1016/j.jclepro.2021.127051 Search in Google Scholar

Hemidat, S., Jaar, M., Nassour, A., & Nelles, M. (2018). Monitoring of composting process parameters: a case study in Jordan. Waste and Biomass Valorization, 9, 2257-2274. https://doi.org/10.1007/s12649-018-0197-x. Search in Google Scholar

Jakubowski, T., & Sołowiej, P. (2016). Dynamics of temperature changes in thermophille phase of composting process in the aspect of sanitary condition of obtained material. Agricultural Engineering, 20(4), 69-75. https://doi.org/10.1515/agriceng-2016-0065. Search in Google Scholar

Jędrczak, A. (2018). Composting and fermentation of biowaste-advantages and disadvantages of processes. Civil and Environmental Engineering Reports, 28(4), 71-87. https://doi.org/10.2478/ceer-2018-0052. Search in Google Scholar

Keng, Z. X., Chong, S., Ng, C. G., Ridzuan, N. I., Hanson, S., Pan, G. T., Lau, P. L., Supramaniam, C. V., Singh, A., Chin, C. F., & Lam, H. L. (2020). Community-scale composting for food waste: A life-cycle assessment-supported case study. Journal of Cleaner Production, 261, 121220.https://doi.org/10.1016/j.jclepro.2020.121220. Search in Google Scholar

Koryś, K.A., Latawiec, A.E., Grotkiewicz, K., & Kuboń, M. (2019). The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability, 11, 6515. https://doi.org/10.3390/su11226515 Search in Google Scholar

Kovačić, Đ., Lončarić, Z., Jović, J., Samac, D., Popović, B., & Tišma, M. (2022). Digestate Management and Processing Practices: A Review. Applied Sciences, 12(18), 9216. https://doi.org/10.3390/app12189216 Search in Google Scholar

Kucher, O., Hutsol, T., Glowacki, S., Andreitseva, I., Dibrova, A., Muzychenko, A., Szeląg-Sikora, A., Szparaga, A., & Kocira, S. (2022). Energy Potential of Biogas Production in Ukraine. Energies, 15, 1710. https://doi.org/10.3390/en15051710 Search in Google Scholar

Kukharets, S., Hutsol, T., Glowacki, S., Sukmaniuk, O., Rozkosz, A. Tkach, O. (2021). Concept of Biohydrogen Production by Agricultural Enterprises. Agricultural Engineering, 25(1), 63-72. https://doi.org/10.2478/agriceng-2021-0005 Search in Google Scholar

Luangwilai, T., Sidhu, H., & Nelson, M. (2021). Understanding the factors affecting the self-heating process of compost piles: Two-dimensional analysis. ANZIAM Journal, 63, C15-C29. https://doi.org/10.21914/anziamj.v63.17119 Search in Google Scholar

Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International journal of environmental research and public health, 15(10), 2224. https://doi.org/10.3390/ijerph15102224 Search in Google Scholar

Mengqi, Z., Shi, A., Ajmal, M., Ye, L., & Awais, M. (2023). Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery, 13, 5445-5468. https://doi.org/10.1007/s13399-021-01438-5 Search in Google Scholar

Neugebauer, M. (2018). Kitchen and garden waste as a source of heat for greenhouses. Agricultural Engineering, 22(1), 83-93. https://doi.org/10.1515/agriceng-2018-0008. Search in Google Scholar

Obidziński, S., Joka Yildiz, M., Dąbrowski, S., Jasiński, J., & Czekała, W. (2022). Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis. Energies, 15, 9427. https://doi.org/10.3390/en15249427 Search in Google Scholar

Pergola, M., Persiani, A., Palese, A. M., Di Meo, V., Pastore, V., D’Adamo, C., & Celano, G. (2018). Composting: The way for a sustainable agriculture. Applied Soil Ecology, 123, 744-750. https://doi.org/10.1016/j.apsoil.2017.10.016. Search in Google Scholar

Qi, H., Zhao, Y., Zhao, X., Yang, T., Dang, Q., Wu, J., Lv, P., Wang, H., & Wei, Z. (2020). Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration. Bioresource technology, 299, 122596. https://doi.org/10.1016/j.biortech.2019.122596. Search in Google Scholar

Shan, G., Li, W., Gao, Y., Tan, W., & Xi, B. (2021). Additives for reducing nitrogen loss during composting: A review. Journal of Cleaner Production, 307, 127308. https://doi.org/10.1016/j.jclepro.2021.127308 Search in Google Scholar

Shapovalov, Y., Zhadan, S., Bochmann, G., Salyuk, A., & Nykyforov, V. (2020). Dry anaerobic digestion of chicken manure: A review. Applied Sciences, 10(21), 7825. https://doi.org/10.3390/app10217825 Search in Google Scholar

Shi, M., Zhao, Y., Zhu, L., Song, X., Tang, Y., Qi, H., Cao, H., & Wei, Z. (2020). Denitrification during composting: Biochemistry, implication and perspective. International biodeterioration & biodegradation, 153, 105043. https://doi.org/10.1016/j.ibiod.2020.105043. Search in Google Scholar

Sikorska, W., Musioł, M., Rydz, J., Kowalczuk, M., & Adamus, G. (2019). Kompostowanie przemysłowe jako metoda zagospodarowania odpadów z materiałów poliestrowych otrzymywanych z surowców odnawialnych. Polimery, 64(11-12), 818-827. https://doi.org/10.14314/polimery.2019.11.11dx.doi.org/10.14314/polimery.2019.11.11. Search in Google Scholar

Smith, M. M., & Aber, J. D. (2018). Energy recovery from commercial-scale composting as a novel waste management strategy. Applied energy, 211, 194-199. https://doi.org/10.1016/j.apenergy.2017.11.006. Search in Google Scholar

Sołowiej, P., Pochwatka, P., Wawrzyniak, A., Łapiński, K., Lewicki, A., & Dach, J. (2021). The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies, 2021, 14, 1183. https://doi.org/10.3390/en14041183 Search in Google Scholar

Szala, B., & Paluszak, Z. (2008). Wpływ procesu kompostowania bioodpadów w kontenerowej technologii Kneer na inaktywację jaj glist Ascaris suum. Medycyna Weterynaryjna, 64(3), 361-36. Search in Google Scholar

Thirunavukkarasu, A., Nithya, R., Kumar, S. M., Priyadharshini, V., Kumar, B. P., Premnath, P., Sivashankar, R., & Sathya, A. B. (2022). A business canvas model on vermicomposting process: key insights onto technological and economical aspects. Bioresource Technology Reports, 18, 101119. https://doi.org/10.1016/j.biteb.2022.101119. Search in Google Scholar

Uddin, M. N., Siddiki, S. Y. A., Mofijur, M., Djavanroodi, F., Hazrat, M. A., Show, P. L., Ahmed, S. F., Chu, Y. M. (2021). Prospects of bioenergy production from organic waste using anaerobic digestion technology: a mini review. Frontiers in Energy Research, 9, 627093. https://doi.org/10.3389/fenrg.2021.627093 Search in Google Scholar

Valverde-Orozco, V., Gavilanes-Terán, I., Idrovo-Novillo, J., Carrera-Beltrán, L., Basantes-Cascante, C., Bustamante, M. A., & Paredes, C. (2023). Agronomic, Economic and Environmental Comparative of Different Aeration Systems for On-Farm Composting. Agronomy, 13(3), 929, https://doi.org/10.3390/agronomy13030929 Search in Google Scholar

Vikram, N., Sagar, A., Gangwar, C., Husain, R., & Kewat, R. N. (2022). Properties of humic acid substances and their effect in soil quality and plant health. In A. Makan (Eds.), Humus and humic substances-recent advances. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.105803 Search in Google Scholar

Vuković, A., Velki, M., Ečimović, S., Vuković, R., Štolfa Čamagajevac, I., & Lončarić, Z. (2021). Vermicomposting-Facts, benefits and knowledge gaps. Agronomy, 11(10), 1952. https://doi.org/10.3390/agronomy11101952. Search in Google Scholar

Waliszewska, H., Zborowska, M., Stachowiak-Wencek, A., Waliszewska, B., & Czekała, W. (2019). Lignin Transformation of One-Year-Old Plants During Anaerobic Digestion (AD). Polymers, 11(5), 1-10. https://doi.org/10.3390/polym11050835 Search in Google Scholar

Weiland, P. (2010). Biogas production: current state and perspectives. Applied microbiology and bio-technology, 85, 849-860. https://doi.org/10.1007/s00253-009-2246-7 Search in Google Scholar

Yatoo, A. M., Ali, M. N., Baba, Z. A., & Hassan, B. (2021). Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development, 41, 1-26. https://doi.org/10.1007/s13593-020-00657-w Search in Google Scholar

Zhang, T., Wu, X., Shaheen, S. M., Abdelrahman, H., Ali, E. F., Bolan, N. S., Ok, Y. S., Li, G., Tsang, D. C. W., & Rinklebe, J. (2022a). Improving the humification and phosphorus flow during swine manure composting: a trial for enhancing the beneficial applications of hazardous biowastes. Journal of hazardous materials, 425, 127906. https://doi.org/10.1016/j.jhazmat.2021.127906 Search in Google Scholar

Zhang, Y., Chen, M., Guo, J., Liu, N., Yi, W., Yuan, Z., & Zeng, L. (2022)b. Study on dynamic changes of microbial community and lignocellulose transformation mechanism during green waste composting. Engineering in Life Sciences, 22(5), 376-390. https://doi.org/10.1002/elsc.202100102 Search in Google Scholar

Zhao, X., Tan, W., Peng, J., Dang, Q., Zhang, H., & Xi, B. (2020). Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process. Environment international, 135, 105380. https://doi.org/10.1016/j.envint.2019.105380. Search in Google Scholar

Zhong, X. Z., Li, X. X., Zeng, Y., Wang, S. P., Sun, Z. Y., & Tang, Y. Q. (2020). Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. Bioresource technology, 306, 123091. https://doi.org/10.1016/j.biortech.2020.123091 Search in Google Scholar