Zacytuj

Adams, M. J. and Antoniw, J. F. 2005. DPVweb: an open access internet resource on plant viruses and virus diseases. Outlooks on Pest Management, 16, 268 ‒ 270.10.1564/16dec08 Search in Google Scholar

Avasare, V., Zhang, Z., Avasare, D., Khan, I., and Qurashi, A. (2015). Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. International Journal of Energy Research, 39(12), 1714 ‒ 1719. DOI: 10.1002/er.3372. Open DOISearch in Google Scholar

Averre, C. W. and Gooding (2000). Virus diseases of greenhouse tomato and their mangment. Available at: http://www.cesncsu.edu/depts./pp/notes/oldnites/vg15.htm. Search in Google Scholar

Bradamante, G., Mittelsten, S. O. and Incarbone, M. (2021). Under siege: virus control in plant meristems and progeny. Plant Cell, 33(8), 2523 – 2537. DOI: 10.1093/plcell/koab140.840845334015140 Open DOISearch in Google Scholar

Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., Mac- Farlane, S., Peters, D., Susi, P., and Torrance, L. (2013). Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 51(1), 177 – 201. DOI: 10.1146/annurev-phyto-082712-102346.23663003 Open DOISearch in Google Scholar

Cao, Y., Zhou, H., Zhou, X., and Li, F. (2020). Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity. Frontiers in Microbiology, 11, 1 ‒ 9. DOI: 10.3389/fmicb.2020.593700.764927233193268 Open DOISearch in Google Scholar

Cobos, A., Montes, N., López-Herranz, M., Gil-Valle, M., and Pagán, I. (2019). Within-host multiplication and speed of colonization as infection traits associated with plant virus vertical transmission. Journal of Virology, 93(23), 1078 – 19. DOI: 10.1128/jvi.01078-19.685448031511374 Open DOISearch in Google Scholar

Constable, F., Daly A., Terras M. A., Penrose L., and Dall, D. (2018). Detection in Australia of cucumber green mottle mosaic virus in seed lots of cucurbit crops. Australian Plant Disease, Notes, 13(1), 18p. DOI:10.1007/s13314-018-0302-9. Open DOISearch in Google Scholar

Cordero, T., Mohamed, M. A., Lopez-Moya, J. J., and Daròs, J. A. (2017). A recombinant potato virus y infectious clone tagged with the rosea1 visual marker (pvy-ros1) facilitates the analysis of viral infectivity and allows the production of large amounts of anthocyanins in plants. Frontiers in Microbiology, 8(611), 1 ‒ 11. DOI: 10.3389/fmicb.2017.00611.538221528428782 Open DOISearch in Google Scholar

Dombrovsky, A., Tran-Nguyen, L. T. T. and Jones R. A. C. (2017). Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annual Review of Phytopathoogy, 55, 231 – 256. DOI: 10.1146/annurev-phyto-080516-035349.28590876 Open DOISearch in Google Scholar

Elbeshehy, E. K., Elazzazy, A. M. and Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6, 453. DOI: 10.3389%2Ffmicb.2015.00453. Open DOISearch in Google Scholar

Garcia-Doval, C. and Jinek, M. (2017). Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. Current Opinion in Structural Biology, 47, 157 – 166. DOI: 10.1016/j.sbi.2017.10.015.29107822 Open DOISearch in Google Scholar

Gooding, J. R. and Suggs, E. G. (1976). Seed borne tobacco mosaic virus in commercial sources of tomato seed. In Plant Dissease Report, 60, 441 ‒ 442. Search in Google Scholar

Golobič, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K., and Kahru, A. (2012). Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environmental science & technology, 46(21), 12112 ‒ 12119. DOI: 10.1021/es3022182.23046103 Open DOISearch in Google Scholar

Hadidi, A., Flores, R., Candresse, T., and Barba, M. (2016). Next-generation sequencing and genome editing in plant virology. Frontiers in Microbiology, 7(1325), 1 ‒ 12. DOI: 10.3389/fmicb.2016.01325.499943527617007 Open DOISearch in Google Scholar

Hao, Y., Cao, X., Ma, C., Zhang, Z., Zhao, N., Ali, A., and Rui, Y. (2017). Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science, 8 (1332), 1‒9. DOI: 10.3389/fpls.2017.01332.553909228824670 Open DOISearch in Google Scholar

Hipper, C., Brault, V., Ziegler-Graff, V., and Revers, F. (2013). Viral and cellular factors involved in phloem transport of Plant Viruses. Frontiers in Plant Science, 4(154), 1 ‒ 25. DOI: 10.3389/fpls.2013.00154.366287523745125 Open DOISearch in Google Scholar

Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., and Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327 – 359. DOI: 10.1146/annurev.phyto.022508.092135.18680428 Open DOISearch in Google Scholar

Hrudova, E., Pokorny, R. and Vichova, J. (2006). Integrated Plant Protection. 1 st ed. Brno: Mendel University of Agriculture and Forestry in Brno. 151p. (in Czech). Search in Google Scholar

Hsu, P., Scott, D., Weinstein, J., Ran, F., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827 – 832. doi :10.1038/nbt.2647.396985823873081 Open DOISearch in Google Scholar

Hull, R. (2014). Chapter 12 ‒ plant to plant movement. In Hull, R. (Ed.) Plant Virology, fifth ed. Academic Press, Boston. pp. 669 – 751.10.1016/B978-0-12-384871-0.00012-1 Search in Google Scholar

International Committee on Taxonomy of Viruses Executive Committee (2020). The new scope of virus taxonomy: Partitioning the virosphere into 15 hierarchical ranks. Nature Microbiology, 5, 668 – 674. DOI: 10.1038/s41564-020-0709-x.718621632341570 Open DOISearch in Google Scholar

James, C. K. NG. and Keith, L. P. (2004). Transmission of plant viruse by aphid vector. Molecular Plant Pathology, 5(5), 505 ‒ 511. DOI: 10.1111/j.1364-3703.2004.00240.x.20565624 Open DOISearch in Google Scholar

Ji, X., Wang, D. and Gao, C. (2019). CRISPR editing-mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Science China Life Sciences, 62 (9), 1246 – 1249. DOI: 10.1007/s11427-019-9722-2.31418136 Open DOISearch in Google Scholar

Jones, R. A. C. (2016). Future scenarios for plant virus pathogens as climate change progresses. Advances in Virus Research, 95, 87 – 147. DOI: 10.1016/bs.aivir.2016.02.004.27112281 Open DOISearch in Google Scholar

Jones, R. A. C. (2018). Chapter Six ‒ Plant and insect viruses in managed and natural environments: Novel and neglected transmission pathways. Advances in Virus Research, 101, 149 – 187. DOI: 10.1016/bs.aivir.2018.02.006.29908589 Open DOISearch in Google Scholar

Jones, R. A. C. (2020). Disease pandemics and major epidemics arising from new encounters between indigenous viruses and introduced crops. Viruses, 12(12), 1388. DOI:10.3390/v12121388.776196933291635 Open DOISearch in Google Scholar

Khan, A. A., Naqvi, Q. A., Khan, M. S., Singh, R., and Raj, S. K. (2005). First report of a begomovirus infecting Calendula in India. Plant Pathology, 54(4), 569 ‒ 569. DOI: 10.1111/j.1365-3059.2005.01220.x. Open DOISearch in Google Scholar

Langner, T., Kamoun, S. and Belhaj, K. (2018). CRISPR crops: plant genome editing toward disease resistance. Annual Review of Phytopathology, 56, 479 – 512. DOI: 10.1146/annurev-phyto-080417-050158.29975607 Open DOISearch in Google Scholar

Li, F., Liu, W. and Zhou, X. (2019). Pivoting plant immunity from theory to the field. Science China Life Sciences, 62 (11), 1539 – 1542. DOI: 10.1007/s11427-019-1565-1.31686321 Open DOISearch in Google Scholar

Loureiro, A., Azoia, N. G., Gomes, A. C., and Cavaco-Paulo, A. (2016). Albumin-based nanodevices as drug carriers. Current Pharmaceutical Design, 22(10), 1371 – 1390. doi :10.2174/1381612822666160125114900.26806342 Open DOISearch in Google Scholar

Ma, X., Zhu, Q., Chen, Y., and Liu, Y. (2016). CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Molecular Plant, 9(7), 961 – 974. DOI: 10.1016/j.molp.2016.04.009.27108381 Open DOISearch in Google Scholar

Mahas, A. and Mahfouz, M. (2018). Engineering virus resistance via CRISPR-Cas systems. Current Opinion in Virology, 32, 1 – 8. DOI: 10.1016/j.coviro.2018.06.002.30005359 Open DOISearch in Google Scholar

Makarova, K., Wolf, Y., Alkhnbashi, O., Costa, F., Shah, S., Saunders, S., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13, 722 – 736. DOI: 10.1038/nrmicro3569.542611826411297 Open DOISearch in Google Scholar

Makarova, K. S., Zhang, F. and Koonin, E. V. (2017a). Snap- Shot: class 1 CRISPR-Cas systems. Cell, 168(5), 946 ‒ 946. DOI: 10.1016/j.cell.2017.02.018.28235204 Open DOISearch in Google Scholar

Makarova, K. S., Zhang, F. and Koonin, E. V. (2017b). Snap- Shot: class 2 CRISPR-Cas systems. Cell, 168, 328. DOI: 10.1016/j.cell.2016.12.038.28086097 Open DOISearch in Google Scholar

Montes, N. and Pagán, I. (2019). Light intensity modulates the efficiency of virus seed transmission through modifications of plant tolerance. Plan Theory, 8(9), 304. DOI: 10.3390/plants8090304.678393831461899 Open DOISearch in Google Scholar

Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5(2), 1 – 9. DOI: 10.4172/2161-0444.1000247. Open DOISearch in Google Scholar

Ning, F., Shao, M., Xu, S., Fu, Y., Zhang, R., Wei, M., and Duan, X. (2016). TiO 2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy & Environmental Science, 9(8), 2633 ‒ 2643.10.1039/C6EE01092J Search in Google Scholar

Pradhanang, P. M. (2009). Tomato mosaic virus: Does it transmit through tomato seeds? Acta Horticulturae, 808, 87 ‒ 94.10.17660/ActaHortic.2009.808.11 Search in Google Scholar

Ripp, S. and Henry, T. B. (2012). Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Treats around US. ACS symposium series, 1079. Publisher: American Chemical Society.10.1021/bk-2011-1079 Search in Google Scholar

Sevík, M. A. and Tohumcu, E. K. (2011). The ELISA analysis results in tomato (Lycopersicon esculenutm MILL.) seed health testing fot Tobacco mosaic virus. Žemdirbyste = Agriculture, 98(3), 301 ‒ 306. Search in Google Scholar

Schoelz, J. E., Harries, P. A. and Nelson, R. S. (2011). Intracellular transport of plant viruses: finding the door out of the cell. Molecular Plant, 4(5), 813 – 831. DOI: 10.1093/mp/ssr070.318339821896501 Open DOISearch in Google Scholar

Singh, S., Awasthi, L. P. and Jangre, A. (2020). Transmission of plant viruses in fields through various vectors. Applied Plant Virology, 313 – 334. DOI: 10.1016/b978-0-12-818654-1.00024-4. Open DOISearch in Google Scholar

Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., et al. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology, 15, 169 – 182. DOI: 10.1038/nrmicro.2016.184.585189928111461 Open DOISearch in Google Scholar

Seo, JK. and Kim, KH. (2016). Long-distance movement of viruses in plants. In Wang, A. and Zhou, X. (Eds.) Current Research Topics in Plant Virology. Springer, Cham. pp. 153 ‒ 172. DOI:10.1007/978-3-319-32919-2_6. Open DOISearch in Google Scholar

Srivastava, A. and Singh, R. (2021). Nanoparticles for sustainable agriculture and their effect on plants. Current Nanoscience, 17(1), 58 ‒ 69.10.2174/1573413716999200403152439 Search in Google Scholar

Trebicki, P. (2020). Climate change and plant virus epidemiology. Virus Research, 286, 198059. DOI: 10.1016/j.virusres.2020.198059.32561376 Open DOISearch in Google Scholar

Wang, Y., Sun, C., Xu, C., Wang, Z., Zhao, M., Wang, C., Liu, L., and Chen, F. (2016). Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism. Tobacco Science and Technology, 49, 22 ‒ 30. DOI: 10.16135/j.issn1002-0861.20160104. Open DOISearch in Google Scholar

Zhang, Y., Malzahn, A., Sretenovic, S., and Qi, Y. (2019b). The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 5, 778 – 794. DOI: 10.1038/s41477-019-0461-5.31308503 Open DOISearch in Google Scholar

Zhuang, J. and Gentry, R. W. (2011). Environmental application and risks of nanotechnology: a balanced view. In Ripp, S. and Henry, T.B. (Eds.) Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats Around Us. ACS Symposium Series, 1079. American Chemical Society, pp. 41 ‒ 67.10.1021/bk-2011-1079.ch003 Search in Google Scholar

eISSN:
1338-4376
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Plant Science, Ecology, other