Otwarty dostęp

Effects of the changes in soil conditions due to land rolling on the growth of barley (Hordeum vulgare L.)


Zacytuj

Acquah, K. and Chen, Y. (2021). Discrete element modelling of soil compaction of a press-wheel. AgriEngineering, 3(2), 278 – 93. DOI:10.3390/agriengineering3020019. Open DOISearch in Google Scholar

Alameda, D. and Villar, R. (2012). Linking root traits to plant physiology and growth in FraxinusangustifoliaVahl. seedlings under soil compaction conditions. Environmental and Experimental Botany, 79, 49 ‒ 57. DOI:10.1016/j.envexpbot.2012.01.004. Open DOISearch in Google Scholar

Ali, A.M., Ibrahim, S.M., and Singh, B. (2020). Wheat grain yield and nitrogen uptake prediction using at Leaf and GreenSeeker portable optical sensors at jointing growth stage. Information Processing in Agriculture, 7(3), 375 ‒ 83. DOI:10.1016/j.inpa.2019.09.008. Open DOISearch in Google Scholar

Arvidsson, J. (1999). Nutrient uptake and growth of barley as affected by soil compaction. Plant and Soil, 208(1), 9 ‒ 19. DOI:10.1023/A:1004484518652. Open DOISearch in Google Scholar

Berti, M.T., Johnson, B.L., and Henson, R.A. (2008). Seeding depth and soil packing affect pure live seed emergence of cuphea. Industrial Crops and Products, 27(3), 272 − 78. DOI:10.1016%2Fj.indcrop.2007.10.004. Open DOISearch in Google Scholar

Beutler, A.N., Centurion, J.F., and da Silva, A.P. (2005). Soil resistance to penetration and least limiting water range for soybean yield in a haplustox from Brazil. Brazilian. Archives of Biology and Technology, 48(6), 863 ‒ 71. DOI:10.1590/S1516-89132005000800002. Open DOISearch in Google Scholar

Bouaziz, A. and Bruckler, L. (1989). Modelling seedling growth and emergence. I. Seedling growth affected by water potential. Soil Science Society of America Journal, 53(6), 1832 ‒ 38. DOI:10.2136/sssaj1989.03615995005300060036x. Open DOISearch in Google Scholar

Cornish, P.S., So, H.B., and McWilliam, J.R. (1984). Effects of soil bulk density and water regimen on root growth and uptake of phosphorus by ryegrass. Australian Journal of Agricultural Research, 35(5), 631 ‒ 44. DOI:10.1071/AR9840631. Open DOISearch in Google Scholar

Czyż, E.A. (2004). Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil and Tillage Research, 79(2), 153 – 66. DOI:10.1016/j.still.2004.07.004. Open DOISearch in Google Scholar

Czyż, E. and Tomaszewska, J. (1993). The effect of different compaction of sandy and loamy soils on their physical properties and the spring barley yield. Polish Journal of Soil Science, 26(1), 11 ‒ 17. Search in Google Scholar

Czyż, E. and Kukier, U. (1997). The effect of soil bulk density and water content on soil aeration, nitrogen forms and barley yield. Fragmenta Agronomica, 2, 163 ‒ 166. Search in Google Scholar

De Freitas, P.L., Zobel, R.W., and Snyder, V.A. (1996). A method for studying the effects of soil aggregate size and density. Soil Science Society of America Journal, 60(1), 288 – 90. DOI:10.2136/sssaj1996.03615995006000010044x. Open DOISearch in Google Scholar

Durant, M.J., Dunning, R.A., Jaggard, K.W., Bugg, R.B., and Scott, R.K. (1988). A census of seedling establishment in sugar-beet crops. Annual of Applied Biology, 113(2), 327 – 45. DOI:10.1111/j.1744-7348.1988.tb03310.x. Open DOISearch in Google Scholar

Edalat, M., Naderi, R., and Egan, T.P. (2019). Corn nitrogen management using NDVI and SPAD sensor-based data under conventional vs. reduced tillage systems. Journal of Plant Nutrition, 42(18), 2310 ‒ 22. DOI:10.1080/01904167.2019.1648686. Open DOISearch in Google Scholar

Gallardo, I.T. (1992). Using infrared canopy temperature and leaf water potential for irrigation scheduling in peppermint. MSc diss. Oregon State University. 84p. Search in Google Scholar

Goldsmith, W., Silva, M., and Fischenich, C. (2001). Determining optimal degree of soil compaction for balancing mechanical stability and plant growth capacity. Vicksburg: Army Engineer Research and Development Center, 9p. Search in Google Scholar

Gulidova, V., Kravchenko, V., and Zakharov, V. (2020). Optimization of the soil agrophysical properties for spring rape on Leached Black Soil. Amazonia Investiga, 9(29), 63 ‒ 68. DOI:10.34069/AI/2020.29.05.8. Open DOISearch in Google Scholar

Guru, T., Thatikunta, R., and Rao, P.R. (2015). Physiological characterization of rice (Oryza sativa L.) genotypes during early vegetative stage. Research Journal of Agricultural Sciences, 6(6), 1371 ‒ 74. Search in Google Scholar

Gürsoy, S. and Türk, Z. (2019). Effects of land rolling on soil properties and plant growth in chickpea production. Soil and Tillage Research, 195(3), 104425. DOI:10.1016/j.still.2019.104425. Open DOISearch in Google Scholar

Håkansson, I., Myrbeck, Å., and Etana, A. (2002). A review of research on seedbed preparation for small grain in Sweden. Soil and Tillage Research, 64(1 – 2), 23 – 40. DOI:10.1016/S0167-1987(01)00255-0. Open DOISearch in Google Scholar

Hill, R.L. (1990). Long-term conventional and no-till effects on selected soil physical properties. Soil Science Society of America Journal, 54(1), 161 ‒ 66. DOI:10.2136/sssaj1990.03615995005400010025x. Open DOISearch in Google Scholar

Ishaq, M., Ibrahim, M., Hassan, A., Saeed, M., and Lal, R. (2001). Subsoil compaction effects on crops in Punjab, Pakistan. II. Root growth and nutrient uptake of wheat and sorghum. Soil and Tillage Research, 60(3 ‒ 4), 153 ‒ 61. DOI:10.1016/S0167-1987(01)00177-5. Open DOISearch in Google Scholar

Jackson, R.D. (1982). Canopy temperature and crop water stress. Advances in Irrigation, 1, 43 ‒ 85. DOI:10.1016/B978-0-12-024301-3.50009-5. Open DOISearch in Google Scholar

Jackson, R.D., Kustas, W.P., and Choudhury, B.J. (1988). A re-examination of the crop water stress index. Irrigation Science, 9, 309 – 17. DOI:10.1007/BF00296705. Open DOISearch in Google Scholar

Jamali, H., Nachimuthu, G., Palmer, B., Hodgson, D., Hundt, A., Nunn, C., and Braunack, M. (2021). Soil compaction in a new light: Know the cost of doing nothing – A cotton case study. Soil and Tillage Research, 213, 105158. DOI:10.1016/j.still.2021.105158. Open DOISearch in Google Scholar

Jia, H., Wang, W., Luo, X., Zheng, J., Guo, M., and Zhuang, J. (2016). Effects of profiling elastic press roller on seedbed properties and soybean emergence under double row ridge cultivation. Soil and Tillage Research, 162, 34 ‒ 40. DOI:10.1016/j.still.2016.04.011. Open DOISearch in Google Scholar

Kooistra, M.J., Schoonderbeek, D., Boone, F.R., Veen, B.W., and Van Noordwijk, M. (1992). Root-soil contact of maize as measured by thin-section technique. 2. Effects of soil compaction. Plant and Soil, 139(1), 119 – 29. DOI:10.1007/BF00012849. Open DOISearch in Google Scholar

Kuzucu, M. (2017). Effects of water harvesting techniques and using humic acid on soil moisture, plant evaporation, growth and yield in pistachio orchards in southeastern of Turkey. Fresenius Environmental Bulletin, 26(12), 7521 ‒ 7528. Search in Google Scholar

Kuzucu, M. (2019). Effects of organic fertilizer application on yield, soil organic matter and porosity on kilis oil olive variety under arid conditions. Eurasian Journal of Forest Science, 7(1), 77 ‒ 83. DOI:10.31195/ejejfs.511098. Open DOISearch in Google Scholar

Leão, T.P., da Silva, A.P., Macedo, M.C.M., Imhoff, S., and Euclides, V.P.B. (2006). Least limiting water range: a potential indicator of changes in near-surface soil physical after the conversion of Brazilian Savanna into pasture. Soil and Tillage Research, 88(1 ‒ 2), 279 ‒ 85. DOI:10.1016%2Fj.still.2005.06.014. Open DOISearch in Google Scholar

Lipiec, J. and Simota, C. (1994). Role of soil climate factors in influencing crop responses to soil compaction in Central and Eastern Europe. In Soane, B.D. and van Ouwerkerk, C. (Eds.) Soil compaction and crop production, Amsterdam: Elsevier Science, pp. 365 – 390.10.1016/B978-0-444-88286-8.50024-6 Search in Google Scholar

Lipiec, J. and Stêpniewski, W. (1995). Effects of soil compaction and tillage systems on uptake and losses of nutrients. Soil and Tillage Research, 35(1 ‒ 2), 37 – 52. DOI:10.1016/0167-1987(95)00474-7. Open DOISearch in Google Scholar

Mourad, R., Jaafar, H., Anderson, M., and Gao, F. (2020). Assessment of leaf area index models using harmonized landsat and sentinel-2 surface reflectance data over a semi-arid irrigated landscape. Remote Sensing, 12(19), 3121. DOI:10.3390/rs12193121. Open DOISearch in Google Scholar

Nanda, M.K., Giri, U., and Bera, N. 2018. Canopy temperature-based water stress ındices: Potential and limitations. In Bal, S.K., Mukherjee, J., Choudhury, B.U., Dhawan, A.K. (Eds.) Advances in crop environment interaction, Singapore: Springer, pp. 365 ‒ 389. Search in Google Scholar

Nawaz, M.F., Bourrie, G., and Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2), 291 ‒ 309. DOI:10.1007/s13593-011-0071-8. Open DOISearch in Google Scholar

Otto, R., Silva, A.P., Franco, H.C.J., Oliveira, E.C.A., and Trivelin, P.C.O. (2011). High soil penetration resistance reduces sugarcane root system development. Soil and Tillage Research, 117, 201 ‒ 10. DOI:10.1016/j.still.2011.10.005. Open DOISearch in Google Scholar

Oussible, M., Crookston, P.K., and Larson, W.E. (1992). Subsurface compaction reduces root and shoot growth and grain yield of wheat. Agronomy Journal, 84(1), 34 ‒ 38. DOI:10.2134/agronj1992.00021962008400010008x. Open DOISearch in Google Scholar

Reichert, J.M., Reinert, D.J., and Braida, J.A. (2003). Soil quality and sustainability of agricultural systems (in Portuguese). Science Environment, 27, 29 – 48. Search in Google Scholar

Reynolds, M.P., Singh, R.P., Ibrahim, A., Ageeb, O.A.A., Larque Saavedra, A., and Quick, J. S. (1998). Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica, 100(1 ‒ 3), 84 ‒ 95. DOI:10.1023/A:1018355906553. Open DOISearch in Google Scholar

Sarto, M.V.M., Bassegio, D., Rosolem, C.A., and Sarto, J.R.W. (2018). Safflower root and shoot growth affected by soil compaction. Bragantia, Campinas, 77(2), 348 ‒ 55. DOI:10.1590/1678-4499.2017191. Open DOISearch in Google Scholar

Sivarajan, S., Maharlooeia, M., Bajwaa, S.G., and Nowatzkia, J. (2018). Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage Research, 175(1), 234 ‒ 43. DOI:10.1016/j.still.2017.09.001. Open DOISearch in Google Scholar

Stirzaker, R.J., Passioura, J.B., and Wilms, Y. (1996). Soil structure and plant growth: Impact of bulk density and biopores. Plant and Soil, 185, 151 ‒ 62. DOI:10.1007/BF02257571. Open DOISearch in Google Scholar

Tian, Y.C., Yao, X.,Yang, J., Cao, W.X., Hannaway, D.B., and Zhu, Y. (2011). Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground—And space-based hyperspectral reflectance. Field Crops Research, 120(2), 299 ‒ 310. DOI:10.1016/j.fcr.2010.11.002. Open DOISearch in Google Scholar

Tong, J., Zhang, Q., Guo, L., Chang, Y., Guo, Y., Zhu, F., Chen, D., and Liu, X. (2015). Compaction performance of biomimetic press roller to soil. Journal of Bionic Engineering, 12(1), 152 ‒ 59. DOI:10.1016/S1672-6529(14)60109-8. Open DOISearch in Google Scholar

Tormena, C.A., da Silva, A.P., and Libardi, P.L. (1999). Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach. Soil and Tillage Research, 52, 223 ‒ 32. DOI: 10.1016/S0167-1987(99)00086-0. Open DOISearch in Google Scholar

Voorhees, W.B., Evans, S.D., and Warnes, D.D. (1985) Effect of preplant wheel traffic on soil compaction, water use, and growth of spring wheat. Soil Science Society of America Journal, 49, 215 ‒ 220. DOI:10.2136/sssaj1985.03615995004900010043x. Open DOISearch in Google Scholar

Wu, D., Andales, A.A.,Yang, H., Sun, Q., Chen, S., Guo, X., Li, D., and Du,T. (2021). Linking crop water productivity to soıl physical, chemical and microbial properties. Frontiers of Agricultural Science and Engineering, 8(4), 545 ‒ 58. DOI:10.15302/J-FASE-2020349. Open DOISearch in Google Scholar

Zhang, J., Liu, X., Liang, Y., Cao, Q., Tian, Y., Zhu, Y., Cao, W., and Liu, X. (2019). Using a portable active sensor to monitor growth parameters and predict grain yield of winter wheat. Sensors, 19(5), 1108. DOI:10.3390/s19051108.642746530841552 Open DOISearch in Google Scholar

eISSN:
1338-4376
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Plant Science, Ecology, other