Otwarty dostęp

Optimal and Suitable Conditions for Prospective Spring Camelina Cultivation in Slovakia – Screening by the System of Soil Climatic Units


Zacytuj

Aiken, R., Baltensperger, D., Krall, J., Pavlista, A. and Johnson, J. (2015). Planting methods affect emergence, flowering and yield of spring oilseed crops in the U.S. central High Plains. Industrial Crops and Products, 69, 273 ‒ 277. DOI: 10.1016/j.indcrop.2015.02.025.10.1016/j.indcrop.2015.02.025 Search in Google Scholar

Berti, M., Gesch, R., Eynck, Ch., Anderson, J. and Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690 ‒ 710. DOI: 10.1016/j.indcrop.2016.09.034.10.1016/j.indcrop.2016.09.034 Search in Google Scholar

Bowen, C.R. and Hollinger, S.E. (2004). Geographic screening of potential alternative crops. Renewable Agriculture and Food Systems, 19(3), 141 ‒ 151. DOI:10.1079/RAFS200473.10.1079/RAFS200473 Search in Google Scholar

Bujnovský, R., Holíčková, M. and Ondrejíčková, P. (2020). Spring Camelina sativa – Perspective cultivation as bio-fuel feedstock in Slovakia. Industrial Crops and Products, 154, 112634. DOI:10.1016/j.indcrop.2020.112634.10.1016/j.indcrop.2020.112634 Search in Google Scholar

Chen, Ch., Bekkerman, A., Afshar, R.K. and Neil, K. (2015). Intensification of dryland cropping systems for bio-feed-stock production: Evaluation of agronomic and economic benefits of Camelina sativa. Industrial Crops and Products, 71, 114 ‒ 121. DOI:10.1016/j.indcrop.2015.02.065.10.1016/j.indcrop.2015.02.065 Search in Google Scholar

Crowley, J.G. and Fröhlich, A. (1998). Factors affecting the composition and use of camelina. Teagasc Project Report No. 4319. Dublin: Crop Research Centre, Teagasc, 19p. Search in Google Scholar

Džatko, M., Sobocká, J. et al. (2009). Guidance for the use of maps of soil ecological units. Bratislava: Soil Science and Conservation Research Institute, 102p. (in Slovak). Search in Google Scholar

Eynck, C. and Falk, K.C. (2013). Camelina (Camelina sativa). In Singh, B.P. (Ed.) Biofuel crops: Production, physiology and genetics, 1st ed. Wallingford: CAB International, pp. 369 ‒ 391.10.1079/9781845938857.0369 Search in Google Scholar

Falasca, S.L., del Fresno, M.C. and Waldman, C. (2014). Developing an agro-climatic zoning model to determine potential growing areas for Camelina sativa in argentina. QScience Connect, 2014(1). DOI:10.5339/connect.2014.4.10.5339/connect.2014.4 Search in Google Scholar

George, N., Hollingsworth, J., Levers, L., Thompson, S. and Kaffka, S. (2015). Canola and camelina: winter annual oilseeds as alternative crops for California. University of California Division of Agriculture and Natural Resources. Available at: https://ucanr.edu/sites/oilseeds/files/211682.pdf [Accessed 12.04.2021]. Search in Google Scholar

Gesch, R.W. and Johnson, J.M.F. (2015). Water use in camelina–soybean dual cropping systems. Agronomy Journal, 107(3), 1098 ‒ 1104. DOI:10.2134/agronj14.0626.10.2134/agronj14.0626 Search in Google Scholar

Heaton, E., Schulte-Moore, L., Helmers, M., Liebman, M. and Milster, F. (2013). Producing food, feed and energy: How can agriculture do it all? Proceedings of the 25th annual Integrated Crop Management Conference. Ames: Iowa State University, pp. 33 ‒ 47. Search in Google Scholar

Holzkämper, A., Calanca, P. and Fuhrer, J. (2010). Evaluating climate suitability for agriculture in Switzerland. In Swayane, D.A., Wanhong Yang, Voinov, A.A., Rizzoli, A. and Filatova, T. (Eds.) Modelling for environmentʼs sake: Proceeding of the iEMSs 2010 Conference. Ottawa, Canada. Available at: https://www.iemss.org/publications/conference/proceedings-of-the-iemss-2010-conference/ [Accessed 08.04.2021]. Search in Google Scholar

Koco, Š., Vilček, J., Torma, S., Michaeli, E. and Solár, V. (2020). Optimising potato (Solanum tuberosum l.) cultivation by selection of proper soils. Agriculture, 10, 155. DOI:10.3390/agriculture10050155.10.3390/agriculture10050155 Search in Google Scholar

Krohn, B.J. and Fripp, M. (2012). A life cycle assessment of biodiesel derived from the „niche filling“ energy crop camelina in the USA. Applied Energy, 92, 92 ‒ 98. DOI: 10.1016/j.apenergy.2011.10.025.10.1016/j.apenergy.2011.10.025 Search in Google Scholar

Krzyżaniak, M., Stolarski, M., Tworkowski, J., Puttick, D., Eynck, Ch., Załuski, D. and Kwiatkowski, J. (2019). Yield and seed composition of top spring camelina genotypes cultivated in the temperate climate of Central Europe. Industrial Crops and Products, 138, 111443. DOI:10.1016/j.indcrop.2019.06.006.10.1016/j.indcrop.2019.06.006 Search in Google Scholar

Li, X. and Mupondwa, E. (2016). Production and value-chain integration of Camelina sativa as dedicated bioenergy feedstock in the Canadian prairies. In Faaij, A.P.C., Baxter, D., Grassi, A. & Helm, P. (Eds.) Setting the course for a biobased economy: Papers of the 24th European Biomass Conference and Exhibition, Amsterdam 6‒9 June, pp. 151 ‒ 157. Available at: http://www.etaflorence.it/proceedings/?detail=12482 [Accessed 09.04.2021]. Search in Google Scholar

Miller, P., Lanier, W. and Brandt, S. (2001). Using growing degree days to predict plant stages. Montguide MT200103 AG 7/2001. Bozeman: Cooperative Extension Service, Montana State University, 8p. Available at:https://landresources.monana.edu/soilfertility/documents/PDF/pub/GDDPlantStagesMT200103AG.pdf [Accessed 09.04.2021]. Search in Google Scholar

Murphy, E.J. (2016). Camelina (Camelina sativa). In McKeon, Th., Hayes, D., Hildenbrand, D. & Weselake, R. (Eds.) Industrial oil crops, 1st ed. Amsterdam: AOCS, Urbana – Elsevier Inc., pp. 207 ‒ 230.10.1016/B978-1-893997-98-1.00008-7 Search in Google Scholar

Neupane, D., Solomon, J.K.Q., Davison, J. and Lawry, T. (2018). Nitrogen source and rate effects on grain and potential biodiesel production of camelina in the semiarid environment of northern Nevada. CGB Bioenergy, 10, 861 – 876.10.1111/gcbb.12540 Search in Google Scholar

Obour, A.K., Sintim, H.Y., Obeng, E. and Jelizjakov, V.D. (2015). Oilseed Camelina (Camelina sativa L. Crantz): Production systems, prospects and challenges in the USA Great Plains. Advances in Plants and Agricultural Research, 2(2), 00043. DOI: 10.15406/apar.2015.02.00043.10.15406/apar.2015.02.00043 Search in Google Scholar

Putnam, D.H., Budin, J.T., Field, L.A. and Breene, W.M. (1993). Camelina: A promising low-input oilseed. In Janick, J. & Simon, J.E. (Eds.) New crops. New York: Wiley, pp. 314 ‒ 322. Search in Google Scholar

Righini, D., Zanetti, F. and Monti, A. (2016). The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo. OCL, 23(5), D504. DOI: 10.1051/ocl/2016021.10.1051/ocl/2016021 Search in Google Scholar

Román-Figueroa, C., Padilla, R., Uribe, J.M. and Paneque, M. (2017). Land suitability assessment for camelina (Camelina sativa L.) development in Chile. Sustainability, 9, 154. DOI:10.3390/su9010154.10.3390/su9010154 Search in Google Scholar

Sintim, H.Y., Zhelizjakov, V.D., Obour, A.K., Garcia, A.G. and Foulke, Th.K. (2016). Evaluating agronomic responses of camelina to seeding date under rain-fed conditions. Agronomy Journal, 108(1), 349 ‒ 357. DOI: 10.2134/agronj2015.0153.10.2134/agronj2015.0153 Search in Google Scholar

Strašil, Z. (2008). Basics of camelia cultivation and possibilities of its use. Guideline for practice. Prague: Research Institute of Crop Production, 21p. (in Czech). Search in Google Scholar

Vilček, J. and Bedrna, Z. (2007). Suitability of agricultural soils and landscape of Slovakia for growing of plants. Bratislava: Soil Science and Conservation Research Institute, 244p. (in Slovak). Search in Google Scholar

Zubr, J. (1997). Oil-seed crop: Camelina sativa. Industrial Crops and Products, 6(2), 113 ‒ 119. DOI:10.1016/S0926-6690(96)00203-8.10.1016/S0926-6690(96)00203-8 Search in Google Scholar

eISSN:
1338-4376
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Plant Science, Ecology, other