Zacytuj

[1] Anderson WF. Prospects for human gene therapy. Science. 1984;226:401–409. 10.1126/science.6093246Search in Google Scholar

[2] Badea I, Verrall R, Baca-Estrada M, et al. In vivo cutaneous interferon-γ gene delivery using novel dicationic (gemini) surfactant–plasmid complexes. J Gene Med. 2005;7:1200–1214. 10.1002/jgm.763Search in Google Scholar

[3] Balgavý P, Devínsky F. Cut-off effects in biological activities of surfactants. Adv Colloid Interface Sci. 1996;66:23–63. 10.1016/0001-8686(96)00295-3Search in Google Scholar

[4] Bombelli C, Faggioli F, Luciani P, Mancini G, Sacco MG. Efficient transfection of DNA by liposomes formulated with cationic gemini amphiphiles. J Med Chem. 2005;48:5378–5382. 10.1021/jm050477rSearch in Google Scholar

[5] Caracciolo G, Pozzi D, Caminiti R, et al. Transfection efficiency boost by designer multicomponent lipoplexes. Biochim Biophys Acta. 2007;1768:2280–2292. 10.1016/j.bbamem.2007.06.027Search in Google Scholar

[6] Cardoso AM, Morais CM, Silva SG, et al. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: A comprehensive study from physicochemical properties to membrane interactions. Int J Pharm. 2014;474:57–69. 10.1016/j.ijpharm.2014.08.011Search in Google Scholar

[7] Donkuru M, Wettig SD, Verrall RE, Badea I, Foldvari M. Designing pH-sensitive gemini nanoparticles for non-viral gene delivery into keratinocytes. J Mater Chem. 2012;22:6232–6244. 10.1039/c2jm15719eSearch in Google Scholar

[8] Eastman S., Siegel C, Tousignant J, et al. Biophysical characterization of cationic lipid:DNA complexes. Biochim Biophys Acta. 1997;1325:41–62. 10.1016/S0005-2736(96)00242-8Search in Google Scholar

[9] Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 1987;84:7413–7417. 10.1073/pnas.84.21.74132993062823261Search in Google Scholar

[10] Foldvari M, Badea I, Wettig S, Verrall R, Bagonluri M. Structural characterization of novel gemini non-viral DNA delivery systems for cutaneous gene therapy. J Exp Nanosci. 2006;1:165–176. 10.1080/17458080500411965Search in Google Scholar

[11] García JP, Marrón E, Martín VI, Moyá ML, Lopez-Cornejo P. Conformational changes of DNA in the presence of 12-s-12 gemini surfactants (s=2 and 10). Role of the spacer’s length in the interaction surfactant-polynucleotide. Colloids Surf B Biointerfaces. 2014;118:90–100. 10.1016/j.colsurfb.2014.03.040Search in Google Scholar

[12] Grueso E, Kuliszewska E, Prado-Gotor R, Perez-Tejeda P, Roldan E. Improving the understanding of DNA-propanediyl-1,3-bis(dodecyldimethylammonium) dibromide interaction using thermodynamic, structural and kinetic approaches. Phys Chem Chem Phys. 2013;15:20064–20074. 10.1039/c3cp53299bSearch in Google Scholar

[13] Hirsch-Lerner D, Zhang M, Eliyahu H, et al. Effect of “helper lipid” on lipoplex electrostatics. Biochim Biophys Acta. 2005;1714:71–84. 10.1016/j.bbamem.2005.04.008Search in Google Scholar

[14] Horniak L, Devínsky F, Balgavý P, Lacko I, Ebringer L, inventors; Commenius University in Bratislava, assignee. Quaternary ammonium halides for increased efficiency of bacterial transformation. Czechoslovakia, CS 269549; 1989. Search in Google Scholar

[15] Imam T, Devínsky F, Lacko I, Mlynarčík D, Krasnec L. Preparation and antimicrobial activity of some new bisquaternary ammonium salts. Pharmazie. 1983;38:308–310. Search in Google Scholar

[16] Izumrudov VA, Zhiryakova MV, Goulko AA. Ethidium Bromide as a Promising Probe for Studying DNA Interaction with Cationic Amphiphiles and Stability of the Resulting Complexes. Langmuir. 2002;18:10348–10356. 10.1021/la020592uSearch in Google Scholar

[17] Jing D, Zhang J, Ma L, Zhang G. Phase behavior of DNA in the presence of cetyltrimethylammonium bromide / alkyl polyglucoside surfactant mixture. Colloid Polym Sci. 2004;282:1089–1096. 10.1007/s00396-003-1039-2Search in Google Scholar

[18] King MD, Marsh D. Free volume model for lipid lateral diffusion coefficients. Assessment of the temperature dependence in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1986;862:231–234. 10.1016/0005-2736(86)90489-XSearch in Google Scholar

[19] Kirby AJ, Camilleri P, Engberts JBFN, et al. Gemini Surfactants: New Synthetic Vectors for Gene Transfection. Angew Chem Int Ed. 2003;42:1448–1457. 10.1002/anie.200201597Search in Google Scholar

[20] Koltover I, Salditt T, Safinya CR. Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys J. 1999;77:915–924. 10.1016/S0006-3495(99)76942-0Search in Google Scholar

[21] Lasic DD, Strey H, Stuart MCA, Podgornik R, Frederik PM. The structure of DNA-Liposome Complexes. J Am Chem Soc. 1997;119:832–833. 10.1021/ja962713gSearch in Google Scholar

[22] McManus JJ, Rädler JO, Dawson KA. Phase Behavior of DPPC in a DNA−Calcium−Zwitterionic Lipid Complex Studied by Small-Angle X-ray Scattering. Langmuir. 2003;19:9630–9637. 10.1021/la034878qSearch in Google Scholar

[23] Menger, Keiper. Gemini Surfactants. Angew Chem Int Ed Engl. 2000;39:1906–1920. 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSearch in Google Scholar

[24] Mochizuki S, Kanegae N, Nishina K, et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim Biophys Acta. 2013;1828:412–418. 10.1016/j.bbamem.2012.10.017Search in Google Scholar

[25] Muñoz-Úbeda M, Misra SK, Barrán-Berdón AL, et al. How Does the Spacer Length of Cationic Gemini Lipids Influence the Lipoplex Formation with Plasmid DNA? Physicochemical and Biochemical Characterizations and their Relevance in Gene Therapy. Biomacromolecules. 2012;13:3926–3937. 10.1021/bm301066wSearch in Google Scholar

[26] Pietralik Z, Krzyszton R, Kida W, Andrzejewska W, Kozak M. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems. Int J Mol Sci. 2013;14:7642–7659. 10.3390/ijms14047642Search in Google Scholar

[27] Pullmannová P, Uhríková D, Funari SS, et al. Polymorphic phase behavior of DNA – DOPE – GEMINI surfactant aggregates: a small angle x-ray diffraction. Acta Fac Pharm Univ Comenianae. 2008;55:170–182. Search in Google Scholar

[28] Pullmannová P, Funari SS, Devínsky F, Uhríková D. The DNA-DNA spacing in gemini surfactants-DOPE-DNA complexes. Biochim Biophys Acta. 2012a;1818:2725–2731. 10.1016/j.bbamem.2012.05.021Search in Google Scholar

[29] Pullmannová P, Bastos M, Bai G, et al. The ionic strength effect on the DNA complexation by DOPC - gemini surfactants liposomes. Biophys Chem. 2012b;160:35–45. 10.1016/j.bpc.2011.09.002Search in Google Scholar

[30] Rädler JO, Koltover I, Salditt T, Safinya CR. Structure of DNA-Cationic Liposome Complexes: DNA Intercalation in Multilamellar Membranes in Distinct Interhelical Packing Regimes. Science. 1997;275:810–814. 10.1126/science.275.5301.810Search in Google Scholar

[31] Robbins PD, Ghivizzani SC. Viral Vectors for Gene Therapy. Pharmacol Ther. 1998;80:35–47. 10.1016/S0163-7258(98)00020-5Search in Google Scholar

[32] Rolland AP. From genes to gene medicines: recent advances in nonviral gene delivery. Crit Rev Ther Drug Carrier Syst. 1998;15:143–198. 10.1615/CritRevTherDrugCarrierSyst.v15.i2.20Search in Google Scholar

[33] Roveri N, Bigi A, Castellani PP, et al. Study of rat tail tendon by x-ray diffraction and freeze-etching technics. Boll Soc Ital Biol Sper. 1980;56:953–959. Search in Google Scholar

[34] Uhríková D, Rapp G, Balgavý P. Condensed lamellar phase in ternary DNA-DLPC-cationic gemini surfactant system: a small-angle synchrotron X-ray diffraction study. Bioelectrochemistry. 2002;58:87–95. 10.1016/S1567-5394(02)00122-6Search in Google Scholar

[35] Uhríková D, Hanulová M, Funari SS, et al. The structure of DNA-DLPC-cationic gemini surfactant aggregates: a small angle synchrotron X-ray diffraction study. Biophys Chem. 2004;111:197–204. 10.1016/j.bpc.2004.05.012Search in Google Scholar

[36] Uhríková D, Hanulová M, Funari SS, et al. The structure of DNA-DOPC aggregates formed in presence of calcium and magnesium ions: a small-angle synchrotron X-ray diffraction study. Biochim Biophys Acta. 2005a;1713:15–28. 10.1016/j.bbamem.2005.05.006Search in Google Scholar

[37] Uhríková D, Zajac I, Dubnicková M, et al. Interaction of gemini surfactants butane-1,4-diylbis-(alkyldimethyl-ammonium bromide) with DNA. Colloids Surf B Biointerfaces. 2005b;42:59–68. 10.1016/j.colsurfb.2005.02.002Search in Google Scholar

[38] Uhríková D, Sabíková A, Hanulová M, et al. The microstructure of DNA-EYPC-gemini surfactant aggregates: A small angle X-ray diffraction study. Acta Fac Pharm Univ Comenianae. 2007;54:198–208. Search in Google Scholar

[39] Verma IM. A tumultuous year for gene therapy. Mol Ther. 2000;2:415–416. 10.1006/mthe.2000.0213Search in Google Scholar

[40] Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release. 2006;116:255–264. 10.1016/j.jconrel.2006.06.024Search in Google Scholar

[41] Wettig SD, Verrall RE, Foldvari M. Gemini Surfactants: A New Family of Building Blocks for Non-Viral Gene Delivery Systems. Curr Gene Ther. 2008;8:9–23. 10.2174/156652308783688491Search in Google Scholar

[42] Wiener MC, White SH. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J. 1992;61:434–447. 10.1016/S0006-3495(92)81849-0Search in Google Scholar

[43] Wiethoff CM, Gill ML, Koe GS, Koe JG, Middaugh CR. A fluorescence study of the structure and accessibility of plasmid DNA condensed with cationic gene delivery vehicles. J Pharm Sci. 2003;92:1272–1285. 10.1002/jps.1039112761816Search in Google Scholar

eISSN:
1338-6786
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Pharmacy, other